بررسی عددی تغییر طول و قدرت پتانسیل های غیر یکنواخت زتا در ریزمجراهای دارای انشعاب به وسیله جریان الکترواسمتیک

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

1 کارشناسی ارشد مهندسی مکانیک، موسسه آموزش عالی اقبال لاهوری، مشهد

2 'گروه مکانیک دانشکده مهندسی دانشگاه فردوسی مشهد

چکیده

در این پژوهش، جریان در یک ریزمجرای چند راهه توسط یک روش عددی شبیه سازی و طول و قدرت پتانسیل غیر یکنواخت زتا در این مجرا های دارای انشعاب به وسیله جریان الکترواسمتیک بررسی شده است. در این جریان ها دو نوع میدان الکتریکی تعریف می شود، اولین میدان الکتریکی، میدان الکتریکی خارجی است که توسط بار موجود روی الکترودهای آند و کاتد ایجاد می شود و دومین میدان الکتریکی به سبب توزیع بار شبکه در دوبل الکتریکی به وجود می آید. با اعمال نیروهای حجمی ناشی از میدانهای فوق در معادلات ممنتوم و گسسته سازی آنها همراه معادله پیوستگی حل می شوند. در ابتدا سعی شده جهت کنترل سیال داخل مجرا جریان میکروفلوئید توسط تغییر میدان الکتریکی داخل مجرا تغییر مسیر یابد. در گام بعد سعی شده یک گرفتگی موضعی در محل انشعابات شبیه سازی شود. اعمال گرفتگی به دو صورت بررسی قدرت گرفتگی و طول ناحیه گرفتگی در نظر گرفته شده است و سعی شده تا توسط تغییر میدان الکتریکی اثر گرفتگی در مجرا تا حد چشم گیری برطرف شود.

کلیدواژه‌ها


[1] Berli, C.L.A., "Theoretical Modelling of Electrokinetic Flow in Microchannel Networks", Colloids and Surfaces A: Physicochemical and Engineering Aspects Vol. 301, pp. 271–280, (2007).

 

[2] Jabari Moghadam, A., "Exact Solution of AC Electro-Osmotic Flow in a Microannulus", Journal of Fluids Engineering, Vol. 135, pp. 10-13, (2013).

 

[3] Lee, J.S.H., Ren, C., and Li, D., "Effects of Surface Heterogeneity on Flow Circulation in Electroosmotic Flow in Microchannels", Analytica Chimica Acta Vol. 530, pp. 273–282, (2005).

 

[4] Mampallil, D., and Ende, D., "Electroosmotic Shear Flow in Microchannels", Journal of Colloid and Interface Science Vol. 390, pp. 234–241, (2013).

 

[5] Misra, J. C., and Chandra, S., "Electro-smotic Flow of a Second-grade Fluid in a Porous Micro Channel  Subject to an AC Electric Field", Journal of Hydrodynamics, Ser. B 25, pp. 309–316, (2013).

 

[6] Ng, C.O., and Chen, B., "Dispersion in Electro-Osmotic Flow through a Slit Channel with Axial Step Changes of Zeta Potential", Journal of Fluids Engineering Vol. 135, pp. 8-8, (2013).

 

[7] Park, H.M. and Lee, H.D., "Effects of Wall Roughness and Velocity Slip on Streaming Potential of Microchannels", International Journal of Heat and Mass Transfer, Vol. 55, pp. 3295–3306, (2012).

 

[8] Zholkovskij, E. K., Yaroshchuk, A. E., Masliyah, J.H., and Pablo Ribas ,J., "Broadening of Neutral Solute Band in Electroosmotic Flow Through Submicron Channel with Longitudinal Non-uniformity of Zeta Potential", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 354, pp. 338–346, (2010).

 

[9] Ay, C. C.W., and Young, C. F., "Application of Lattice Boltzmann Method to the Fluid Analysis in a Rectangular Micro Channel", Computers and Mathematics with Applications Vol. 64, pp. 1065–1083, (2012).

 

[10] Babaie, A., Saidi, M.H., and Sadeghi, A., "Heat Transfer Characteristics of Mixed Electroosmotic and Pressure Driven Flow of Power-law Fluids in a Slit Micro Channel", International Journal of Thermal Sciences, Vol. 53, pp. 71–79, (2012).

 

[11] Chen, X.Y., Toh, K.C., Chai, J.C., and Yang, C., "Developing Pressure-driven Liquid Flow in Microchannels under the Electro Kinetic Effect", International Journal of Engineering Science, Vol. 42, pp. 609-622, (2004).

 

[12] Dasa, S., Thundatb, T., and K.Mitra, S., "Analytical Model for Zeta Potential of Asphaltene", Fuel, Vol. 108, pp. 543–549, (2013).

 

[13] Hadigol, M., Nosrati, R., and Raisee, M., "Numerical Analysis of Mixed Electroosmotic /Pressure Driven Flow of Power-law Fluids in Microchannels and Micropumps", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 374, pp. 142–153, (2011).

 

[14] Jain, M., and Nandacumar, K., "Optimal Patterning of Heterogeneous Surface Charge for Improved Electro Kinetic Micro mixing", Computers and Chemical Engineering, Vol. 49, pp. 18–24, (2013).

 

[15] Kang, K. H., Park, J., Kang, I.S., and Huh, K.Y., "Initial Growth of Electro Hydrodynamic Instability of Two-layered Miscible Fluids in T-Shaped Micro Channels", International Journal of Heat and Mass Transfer, Vol. 49, pp. 4577–4583, (2006).

 

[16] Mirbozorgi, S. A., Niazmand, H., and Renksizbulut, M., "Electro-Osmotic Flow in Reservoir-connected Flat Microchannels with Non-uniform Zeta Potential", Journal of Fluids Engineering, Vol. 128, pp. 1133–1143, (2006).

 

[17] Mirbozorgi, S. A., Niazmand, H., and Renksizbulut, M., "Streaming Electro Potential in Pressure–driven Flows Through Reservoir–connected Microchannels", Journal of Fluids Engineering, Vol. 129, pp. 1346– 1357, (2007).

 

[18] Nosrati, R., Hadigol, M., and Raisee, M., "The effect of Y-Component Electroosmotic Body Force in Mixed Electroosmotic/Pressure Driven Microflows", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 372, pp. 190–195, (2010).

 

[19] Saha, A. A., Mitra, S. K. and Li, X., " Electroosmotic Effect on Flows in a Serpentine Micro Channel with Varying Zeta Potential", Journal of Power Sources, Vol. 164, pp. 154–165, (2007).

 

[20] Sánchez, S., Arcos, J., Bautista, O., and Méndez, F., "Joule Heating Effect on a Purely Electroosmotic Flow of Non-Newtonian Fluids in a Slit Microchannel", Journal of Non-Newtonian Fluid Mechanics, Vol. 192, pp. 1–9, (2013).

 

[21] Yalcin, S. E., Sharma, A., Qian, S., Joo, S.W., and Baysal, O., "On-demand Particle Enrichment in a Microfluidic Channel by a Locally Controlled Floating Electrode, Sensors and Actuators", B: Chemical, Vol. 153, pp. 277–283, (2011).

 

[22] Yavari, H., Sadeghi, A., Saidi, M. H., and Chakraborty, S., " Combined Influences of Viscous Dissipation, Non-uniform Joule Heating and Variable Thermophysical Properties on Convective Heat Transfer in Microtubes", International Journal of Heat and Mass Transfer, Vol. 55, pp. 762–772, (2012).

 

[23] Yeom, T., "Lattice Boltzmann Method for Micro Channel and Micro Orifice Flows", ProQuest, MSc  Thesis, Oklahama State University, USA, (2007).

 

[24] Pomeau, B.H.Y., and Frisch, U., "Lattice-gas Automata for the Navier-Stokes Equation", Phys. Rev. Lett, pp. 322-327, (1986).

 

[25] Zou, Q., and He, X., "On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model", Physics of Fluids, Vol. 9, No. 6, pp. 1591-1598, (1997).

 

[26] Arcidiacono, S., Mantzaras, J., and Karlin, I., "Lattice Boltzmann Simulation of Catalytic Reactions", Physical Review E, 046711, (2008).

 

[27] Chen, S., Liu, Z., Zhang, C., He, Z., Tian, Z., Shi, B., and Zheng, C., "A Novel Coupled Lattice Boltzmann Model for Low Mach Number Combustion Simulation", Applied Mathematics and Computation, Vol. 193, No. 1,  pp. 266-284, (2007).

 

[28] Chiavazzo, E., "Invariant Manifolds and Lattice Boltzmann Method for Combustion", Diss., Eidgenössische Technische Hochschule ETH Zürich, PhD Thesis, ETH Dissertation No. 18233, Swiss Federal Institue of Technology, Zurich, Switzerland, pp. 701-704, (2009).

 

[29] Guo, Z., and Shu, C., " Lattice Boltzmann Method and its' Applications in Engineering", World Scientific Publishing Company Incorporated, Huazhong University of Science and Technology, China, (2013).

 

[30] Qian, Y., d'Humières, D., and Lallemand, P., "Lattice BGK Models for Navier-Stokes Equation", EPL (Europhysics Letters), Vol. 17, No. 6, pp. 479-484, (1992).

 

[31] Succi, S., "The Lattice Boltzmann Equation: for Fluid Dynamics and Beyond", Oxford University Press, (2001).

 

[32] Verhaeghe, F., Luo, L. S., and Blanpain, B., "Lattice Boltzmann Modeling of Microchannel Flow in Slip Flow Fegime", Journal of Computational Physics, Vol. 228, No.1, pp. 147-157, (2009).

 

[33] Wolf-Gladrow, D., "Lattice-gas Cellular Automata and Lattice Boltzmann Models", Springer, pp. 991-998, (2000).

 

[34] Yu, D., Mei, R., Luo, L. S., and Shyy, W., "Viscous Flow Computations with the Method of Lattice Boltzmann Equation", Progress in Aerospace Sciences, Vol. 39, No. 5, pp. 329-367, (2003).