بررسی تحلیلی رفتار دینامیکی ورقهای هدفمند ویسکوالاستیک تحت بارهای عرضی با تغییرات زمانی دلخواه

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

دانشیار، دانشکده مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، قطب علمی سازه‌ها و سامانه‌های هوشمند

چکیده

در مقاله کنونی، رفتار دینامیکی ورق ویسکوالاستیک هدفمند روی تکیه­گاه­های ساده، تحت بار عرضی با تغییرات زمانی دلخواه، به روش تحلیلی مورد بررسی قرار گرفته است. مدل انتگرالی توارثی برای توصیف رفتار ویسکوالاستیک مواد و تابع توانی برای توصیف تغییرات هدفمند ویژگیهای مواد در جهت عرضی استفاده شده­اند. برای یافتن پاسخ معادله دیفرانسیلی- انتگرالی حاکم بر ورق، حل مکانی ناویر و حل زمانی رانگ-کوتا با تبدیل انتگرال­های زمانی به شیوه ذوزنقه­ای استفاده شده است. اثر ویژگی­های مختلف مواد و پارامترهای هندسی بر تاریخچه زمانی پاسخ ورق، به طور گسترده بررسی شده­ است. نتایج نشان می­دهند که به دلیل ماهیت میراسازی مواد، در زمان­های ابتدایی سختی ورق افزایش و در نتیجه، خیز دینامیکی بیشینه ورق کاهش و فرکانس طبیعی آن افزایش می­یابد.

کلیدواژه‌ها


[1]     Praveen, G., and Reddy, J. N., “Nonlinear Transient Thermoelastic Analysis of Functionally Graded Ceramic-metal Plates”, International Journal of Solids and Structures, Vol. 35, No. 33, pp. 4457-4476, (1998).

 

[2]     Cederbaum, G., and Aboudi, J., ”Dynamic Rresponse of Viscoelastic Laminated Plates”, Journal of Sound and Vibration, Vol. 133, No. 2, pp. 225-238, (1989).

 

[3]     Chen, T.M., “The Hybrid Laplace Transform/Finite Element Method Applied to the  Quasi‐static and Dynamic Analysis of Viscoelastic Timoshenko Beams”, International Journal  for Numerical Methods in Engineering, Vol. 38, No. 3, pp. 509-522, (1995).

 

[4]     Ilyasov, M., and Aköz., A., “The Vibration and Dynamic Stability of Viscoelastic Plates”, International Journal of Engineering Science, Vol. 38, No. 6, pp. 695-714, (2000).

 

[5]     Paulino, G.H., and Jin, Z.H., ‘‘Correspondence Principle in Viscoelastic Functionally Graded Materials”, ASME Journal of Applied Mechanics, Vol. 68, pp. 129–132, (2001).

 

[6]     Paulino, G., and Jin, Z.H., “Viscoelastic Functionally Graded Materials Subjected to Antiplane Shear Fracture”, Journal of Applied Mechanics, Vol. 68, No. 2, pp. 284-293, (2001).

 

[7]     Paulino, G. H., and Jin, Z. H.,”A Crack in a Viscoelastic Functionally Graded Material Layer Embedded Between Two Dissimilar Homogeneous Viscoelastic Layers–antiplane  Shear Analysis”,  International Journal of Fracture, Vol. 111, No. 3, pp. 283-303, (2001).

 

[8]     Jin, Z.H., and Paulino, G. H, ‘‘A Viscoelastic Functionally Graded Strip Containing a Crack Subjected to In-plane Loading”, Engineering Fracture Mechanics, Vol. 69, pp. 1769–1790, (2002).

 

[9]     Abdoun, F., Azrar, L., Daya, E.M., and Potier-Ferry, M., ”Forced Harmonic Response of Viscoelastic Structures by an Asymptotic Numerical Method”, Computers & Structures, Vol. 87, No. 1, pp. 91-100, (2009).

 

[10] Assie , A.E., Eltaher, M.A., and Mahmoud, F.F., “The Response of Viscoelastic-frictionless Bodies under Normal Impact”, International Journal of Mechanical Sciences, Vol. 52, No. 3, pp. 446-454, (2010).

 

[11] Assie, A.E., Eltaher, M.A., and Mahmoud, F.F., “Modeling of Viscoelastic Contact-impact Problems”, Applied Mathematical Modeling, Vol. 34, pp. 2336-2352, (2010).

 

[12] Assie, A.E., Eltaher, M.A., and Mahmoud, F.F., “Behavior of a Viscoelastic Composite Plates under Transient Load”, Journal of Mechanical Science and Technology, Vol. 25, No. 5, pp. 1129-1140, (2011).

 

[13] Altenbach, H., and Eremeyev, V.A., “On the Bending of Viscoelastic Plates Made of  Polymer Foams”, Acta Mechanica, Vol. 204, No. 3- 4, pp. 137-154, (2009).

 

[14] Altenbach, H., and Eremeyev, V.A., “Analysis of the Viscoelastic Behavior of Plates Made of Functionally Graded Materials”, ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 88, No. 5, pp. 332-341, (2008).

 

[15] Lakes, R.S., “Viscoelastic Materials”, Cambridge University Press, New York, (2009).

 

[16] Badalov, F.B., Eshmatov, K., and Akbarov, U.I., ”Stability of a Viscoelastic Plate under Dynamic Loading”, International Journal of Applied Mechanics, Vol. 27, No. 9, pp. 892-899, (1991).

 

[17] Ugural, A.C., “Stress in Plates and Shells,” McGraw- Hill, New York, (1999).

 

[18] Gerald, C.F., and Wheatley, P.O., “Applied Numerical Analysis,” 7th Edition, Pearson, California, (2003).  

 

[19] Wang, Y., and Tsai, T., “Static and Dynamic Analysis of a Viscoelastic Plate by the Finite Element Method”, Applied Acoustics, Vol. 25, No. 2, pp. 77-94, (1988).

 

[20] Shariyat, M., and Azadmanesh, M., “Thermal Buckling Analysis of Rectangular Composite Plates Subjected to Large Deflections, Based on a Layerwise Theory and Budiansky's Criterion Modification”, ISME Journal Vol. 9, No. 1, pp. 25-40, (2007).