تئوری عمومی-محلی اصلاح شده برای تحلیل استاتیکی ورقهای ساندویچی و کامپوزیتی تحت بار عرضی

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

1 آستاد مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی

2 دانشگاه صنعتی خواجه نصیرالدین طوسی، دانشکده مهندسی مکانیک

چکیده

در مقاله کنونی، یک تئوری محلی-عمومی اصلاح شده به منظور تحلیل ورقهای چندلایه و ساندویچی ارائه شده است. از ویژگیهای بارز آن، درنظرگرفتن جابجایی هسته در راستای ضخامت و محاسبه تنشهای برشی عرضی با استفاده از حل معادلات تعادل سه بعدی الاستیسیته میباشد. نتایج حاصله هم برای ورقهای ساندویچی نازک و هم ورقهای ضخیم ازدقت مناسبی برخوردارند. همچنین بدلیل درنظر گرفتن تغییر شکلپذیری هسته، در هر دو حالتی که هسته ورق ساندویچی نرم ویا سفت باشد تئوری جوابهای قابل قبولی ارائه داده است. در نهایت بعد از صحت سنجی، تاثیر پارامترهای مختلف بر عملکرد ورق به دقت بررسی شده است.

کلیدواژه‌ها

موضوعات


[1]     Kant, T., and Swaminathan, K., “Estimation of Transverse/Interlaminar Stresses in Laminated Composites, A Selective Review and Survey of Current Developments”, Composite Structures, Vol. 49, pp. 65–75, (2000).

 

[2]     Shariyat, M., Khalili, S. M. R., and Rajabi, I., “A Global–local Theory with Stress Recovery and a New Post-processing Technique for Stress Analysis of Asymmetric Orthotropic Sandwich Plates with Single/Dual Cores”, Computer Methods in Applied Mechanics and Engineering, Vol. 286, pp. 192-215, (2015).

 

[3]     Reddy, J.N., “Mechanics of Laminated Composite Plates and Shells: Theory and Analysis”, CRC Press, 2nd Edition, (2004).

 

[4]     Wanji, C., and Zhen, W., “A Selective Review on Recent Development of Displacement-Based Laminated Plate Theories”, Recent Patents on Mechanical Engineering, Vol. 44, pp. 1-29, (2008).

 

[5]     Carrera, E., Brischetto, S., and Nali, P., “Plates and Shells for Smart Structures”, John Wiley & Sons, Chichester, United Kingdom, (2011).

 

[6]     Babu, C.S., and Kant, T., “Refined Higher-order Finite Element Models for Thermal Buckling of Laminated Composite and Sandwich Plates”, J. Thermal Stresses, Vol. 23, pp. 11–30, (2000).

 

[7]     Nayak, A.K., Moy, S.S.J., and Shenoi, R.A., “A Higher Order Finite Element Theory for Buckling and Vibration Analysis of Initially Stressed Composite Sandwich Plates”, Journal of Sound Vibration, Vol. 286.4, pp. 763-780, (2005).

 

[8]     Shariyat, M., “Thermal Buckling Analysis of Rectangular Composite Plates with Temperature-dependent Properties Based on a Layerwise Theory”, Thin-Walled Struct., Vol. 45, pp. 439–452, (2007).

 

[9]     Robbins, D.H., and Reddy, J.N., “Modeling of Thick Composites using a Layer-wise Theory”, International Journal for Numerical Methods in Engineering, Vol. 36, pp. 655-677, (1993).

 

[10] Garcia Lage, R., MotaSoares, C.M., MotaSoares, C.A., and Reddy, J.N., “Analysis of Adaptive Plate Structures by Mixed Layerwise Finite Elements”, Composite Structures, Vol. 66, pp. 269-276, (2004).

 

[11]  Matsunaga, H., “Thermal Buckling of Angle-ply Laminated Composite and Sandwich Plates According to a Global Higher-order Deformation Theory”, Composite Structure, Vol. 72, pp. 177–192, (2006).

 

[12] Shariyat, M., “Dynamic Buckling of Suddenly Loaded Imperfect Hybrid FGM Cylindrical Shells with Temperature-dependent Material Properties under Thermo-electro-Mechanical Loads”, Int. J. Mech. Sci., Vol. 50, pp. 1561–1571, (2008).

 

[13] Shariyat, M., “Vibration and Dynamic Buckling Control of Imperfect Hybrid FGM Plates with Temperature-dependent Material Properties Subjected to Thermo-electro-Mechanical Loading Conditions”, Composite Structures, Vol. 88, pp. 4501-4517, (2009).

 

[14] Dafedar, J.B., Desai, Y.M., and Mufti, A., “Stability of Sandwich Plates by Mixed, Higher-order Analytical Formulation”, Int. J. Solids Struct., Vol. 40.17, pp. 40-45, (2003).

 

[15] Malekzadeh, K., Khalili, M.R., and Mittal, R.K., “Local and Global Damped Vibrations of Plateswith a Viscoelastic Soft Flexible Core: An Improved High-order Approach”, Journal of Sandwich Structures and Materials, Vol. 7, pp. 431-456, (2005).

 

[16] Carrera, E., and Brischetto, S., “A Survey with Numerical Assessment of Classical and Refined Theories for the Analysis of Sandwich Plates”, Applied Mechanics Reviews, Vol. 62, pp. 010803, (2009).

 

[17] Brischetto, S., Carrera, E., and Demasi, L., “Improved Bending Analysis of Sandwich Plates using a Zig-Zag Function”, Composite Structures, Vol. 89, pp. 408–415, (2009).

 

[18] Li, X., and Liu, D., “Generalized Laminate Theories Based on Double Superposition Hypothesis”, International Journal for Numerical Methods in Engineering, Vol. 40, No. 7, pp. 1197–1212, (1997).

 

[19] Shariyat, M., “A Generalized Global–local High-order Theory for Bending and Vibration Analyses of Sandwich Plates Subjected to Thermo-mechanical Loads”, International Journal of Mechanical Science, Vol. 52, pp. 495–514, (2010).

 

[20] Kapuria, S., and Nath, J.K., “On the Accuracy of Recent Global–local Theories for Bending and Vibration of Laminated Plates”, Composite Structures, Vol. 95, pp. 163–172, (2013).

  

[21]Cetkovic, M., and Vuksanovic, D., “Free Vibrations and Buckling of Laminated Composite and Sandwich Plates using a Layerwise Displacement Model”, Composite Structures, Vol. 88, No. 2, pp. 219-227, (2009).

 

[22]    Pagano, N.J., “Exact Solutions for Rectangular Bi-directional Composites”, Journal of Composite Materials, Vol. 4, pp. 20–34, (1970).

 

[23]    Sheikh, A.H., and Chakrabarti, A., “A New Plate Bending Element Based on Higher-order Shear Deformation Theory for the Analysis of Composite Plates”, Finite Element in Analysis and Design, Vol. 39, pp. 883–903, (2003).

 

[24] Cho, M., and Oh, J., “Higher Order Zig-Zag Theory for Fully Coupled Thermo-electric-Mechanical Smart Composite Plate”, International Journal of Solids and Structures, Vol. 41, pp. 1331–1356, (2004).

 

[25] Fan, J., and Ye, J., “An Exact Solution for the Statics and Dynamics of Laminated Thick Plates with Orthotropic Layers”, International Journal of Solids and Structures, Vol. 26.5, pp. 655-662, (1990).

 

[26] Srinivas, S., and Rao, A. K., “Bending, Vibration and Buckling of Simply Supported Thick Orthotropic Rectangular Plates and Laminates”, International Journal of Solids and Structures, Vol. 6.11, pp. 1463-1481, (1970).

[27] Khalili, S. M. R., Shariyat, M., and Rajabi, I., “A Finite Element Based Global–local Theory for Static Analysis of Rectangular Sandwich and Laminated Composite Plates”, Composite Structures, Vol. 107, pp. 177-189, (2014).

 

Mihir, K., Pandita, A., Sheikhb, H., Bhrigu, A., and Singhc, N., “An Improved Higher Order ZigZag Theory for the Static Analysis of Laminated Sandwich Plate with Soft Core”, Finite Elements in Analysis and Design, Vol. 44, pp. 602-610, (2008).