بررسی عددی انتقال حرارت و تولید توان الکتریکی ترکیب مولدهای ترموالکتریک با مبدل هیبرید فتوولتائیک-ترموالکتریک در یک حفره جاذب خورشیدی

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 استاد و مدیر گروه تبدیل انرژی- دانشکده مهندسی مکانیک و انرژی- دانشگاه شهید بهشتی

2 دانشکده مهندسی مکانیک و انرژی- دانشگاه شهید بهشتی

چکیده

در این پژوهش مدل نوینی از سامانه ترکیبی ترموالکتریک-فتوولتائیک نصب شده در یک حفره مکعبی جاذب ارائه شده است. با اینکه میزان توان تولیدی سیستم پیشنهادی نسبت به ساختار حفره تمام هیبرید کمتر است اما نسبت به سیستم هیبرید فتوولتائیک-ترمو الکتریک صفحه ای 2 برابر می باشد. آنالیز انتقال حرارت حفره نشان می دهد بیشترین میزان تابش در سطح پایین حفره اتفاق می افتد و لذا بهینه ترین محل نصب سیستم هیبرید در وجه پایینی حفره است. هزینه تولید انرژی این ساختار جدید نسبت به حفره تمام هیبرید 40 درصد کمترخواهد بود.

کلیدواژه‌ها


 [1] International Energy Outlook 2016, Available: http://www.eia.gov/ieo
 
 [2]  World Energy Consumption. Available:
 
 [3] Sundarraj, P., Maity, D., Roy, S., and Taylor, R. A., “Recent Advances in Thermoelectric Materials and Solar Thermoelectric Generators–a Critical Review”, RSC Advances., Vol. 4, pp. 46860-46874, (2014).
 
 [4] Zare, M., Ramin, H., and Hosseini, R., “Optimization of Segmented Thermoelectric Generator and Calculation of Performance”, Amirkabir Journal of Science and Research (Mechanical Engineering)  Vol. 45, pp. 27-29, (2013).
 
 [5] Cha´vez-Urbiola, E. A., Vorobiev, Yu. V., and Bulat,  L.P., ”Solar Hybrid Systems with Thermoelectric Generators”, Solar Energy, Vol. 86, pp. 369–378, (2012).
 
[6] Miljkovic, N., and Wan, E. N., “Modeling and Optimization of Hybrid Solar Thermoelectric Systems with Thermosiphons”, Solar Energy, Vol. 85 pp. 2843–2855, (2011).
 
[7] Hassasnniadoon, M., AbbasNejad, A., and Moazemigoudarzi, A., “Experimental Investigation of Fresnel Lens Application in a Solar Water Heater with the Electricity Generation via Thermoelectric Module”, Journal of Solid and Fluid Mechanic, Vol. 4, pp. 159-169, (2014).
 
[8] Deng, Y., Zhu, W., Wang, Y., and Shi, Y., “Enhanced Performance of Solar-driven Photovoltaic Thermoelectric Hybrid System in an Integrated Design”, Solar Energy, Vol. 88 , pp. 182–191, (2013).
 
[9] Li, Y., Witharana, S., Cao, H., Lasfargues, M., Huang,Y., and Ding, Y., “Wide Spectrum Solar Energy Harvesting through an Integrated Photovoltaic and Thermoelectric System”, Particuology, Vol. 15, pp. 39–44, (2014).
 
[10] Lina, W., Shih, T.,  Zheng, J., Zhang, Y., and Chen, J., “Coupling of Temperatures and Power Outputs in Hybrid Photovoltaic and Thermoelectric Modules”, International Journal of Heat and Mass Transfer, Vol. 74, pp. 121–127, (2014).
 [11] Zhang, J., Xuan, Y., and Yang, L., “Performance Estimation of Photovoltaic Thermoelectric Hybrid Systems”, International Journal of Energy, Vol. 78, No. 15, pp. 895-903, (2014).
 
 [12] Panga, W., Liu, Y., Shao, S., and Gao, X., “Empirical Study on Thermal Performance through Separating Impacts from a Hybrid PV/TE System Design Integrating Heat Sink”, International Communications in Heat and Mass Transfer, Vol. 60, pp. 9-12, (2015).
 
[13] Wu, Y., Wu, S., and Xiao, L., “Performance Analysis of Photovoltaic–thermoelectric Hybrid System with and without Glass Cover”, International Journal of Energy Conversion and Management, Vol. 93,  pp. 151–159, (2015).
 
[14] Najafi, H., and Woodbury, K. A., “Modeling and Analysis of a Combined Photovoltaic Thermoelectric Power Generation System”, Journal of Solar Energy Engineering, ASME, Vol. 135, No. 3, pp. 031013-031013-8, (2013).
 
[15] Fisac, M., Villasevil, F.X., and López, F., “High-efficiency Photovoltaic Technology Including Thermoelectric Generation”, Journal of Power Sources, Vol. 252, pp. 264-269, (2014).
 
[16] Najafi, H., and Woodbury, K.A., “Optimization of a Cooling System Based on Peltier Effect for Photovoltaic Cells”, Solar Energy, Vol. 91, pp. 152-160, (2013).
 
[17] Vishal, V., Aarti, K., and Singh, B., “Complementary Performance Enhancement of PV Energy System through Thermoelectric Generation”, Renewable and Sustainable Energy Reviews, Vol. 58, pp. 1017-1026, (2016).
 
[18] Farhangian Marandi, O., Ameri, M., and  Adelshahian, B., “The Experimental Investigation of a Hybrid Photovoltaic Thermoelectric Power Generator Solar Cavity-Receiver”, Solar Energy, Vol. 161, pp. 38-46, (2018).
 
[19] Howell, J., Siegel, R., and Pinar, M., “Thermal Radiation Heat Transfer”, Fifth Ed, pp. 222- 248, New York,  Taylor and Francis Inc., (2002).
 
[20] Modest, M. F., “Radiative Heat Transfer, Third Edition”, pp. 269-278, Elsevier, Science and Technology, London, (2013).
 
[21] Clausing, A. M., Waldvogel, J. M., and Lister, L. D., “Natural Convection from Isothermal Cubical Cavities with a Variety of Side Facing Apertures”,  Heat Transfer, Vol. 109, pp. 407-412, (1987).
 
[22] Leibfried, U., and Ortjohann, J., “Convective Heat Loss from Upward and Downward-facing Cavity Solar Receivers: Measurements and Calculations”, J. Solar  Energy Engineering., Vol. 117, pp. 75-84, (1995).
 
[23] Taumoefolau, T., Paitoonsurikarn, S., Hughes, G., and Lovegrove, K., “Experimental Investigation of Natural Convection Heat Loss from a Model Solar Concentrator Cavity Receiver”, Solar Energy Engineering, Vol. 126, pp. 801-807, (2004).
 
[24] Suter, C., “Thermoelectric Conversion of Concentrated Solar Radiation and Geothermal Energy”, Phd Thesis, ETH, Zurich, Switzerland, (2013).
 
[25] 801 Database Structure and Properties, Design Institute for Physical Property Research, American Institute of Chemical Engineers (AIChE), New York, USA, (2010).
 
 [26] Sera, D., Teodorescu R., and Rodriguez, P., “PV Panel Model Based on Data Sheet Values”, Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE), Vigo, Spain,  pp. 2392–2396, (2007).
 
[27] Meflah, A., Mahrane, A., Madjid, C., Khadidja, R., Hachemi, R., and Smara Z., “Current-Voltage Characteristic Modeling of a Silicon Micromorphous Photovoltaic Module”, IEEE Xplore, 3rd International Renewable and Sustainable Energy Conference (IRSEC'15), Marrakech & Ouarzazate, Morocco, pp. 1-6, (2015).
 
[28] Kryotherm Company Catalogue(Informational Booklet) Available:
 
[29] Steinfield, A., and Schubnell, M., “Optimum Aperture Size and Operating Temperature of a Solar Cavity-Receiver”, Solar Energy, Vol. 50, pp. 19-25, (1993).
 
[30] Mahmoodi, S., Berahmandpour, H., and  Heydari, K., “Electricity Cost Evaluation by LCOE Algorithm in Different Energy Production Technology in IRAN”, 30th International Power Sytem Confrence, Tehran, Iran, 23-25 Nov, (2015).
 
[31] Branker, K., Pathak, M. J. M., and  Pearce, J. M., “A Review of Solar Photovoltaic Levelized Cost of Electricity”, Renewable and Sustainable Energy Reviews, Vol. 15, pp. 4470– 4482, (2011).