بررسی عددی انتقال حرارت در میکروکانال مارپیچی با نانو سیالات آب- اکسید آلومینیوم و آب- اکسید مس

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

1 دانشجوی دکترا، گروه مهندسی مکانیک، واحد یزد، دانشگاه آزاد اسلامی، یزد، ایران

2 استادیار، دکتری تخصصی تبدیل انرژی، گروه مهندسی مکانیک، واحد یزد، دانشگاه آزاد اسلامی، یزد، ایران

3 کارشناسی ارشد مهندسی مکانیک، دانشگاه یزد، یزد،ایران

4 باشگاه پژوهشگران جوان و نخبگان، واحد یزد، دانشگاه آزاد اسلامی، یزد، ایران

چکیده

در این تحقیق میکروکانال های گرماگیر مورد بررسی قرار گرفته است. برای بهبود کارایی انتقال حرارت باید هدایت حرارتی سیال، افزایش یابد. در این پژوهش، به مطالعه عددی انتقال حرارت جابجایی اجباری، در میکروکانال گرماگیر مارپیچی، با استفاده از نانو سیال آب- اکسید آلومینیوم و آب- اکسید مس و به تاثیر پارامتر هایی نظیر قطر هیدرولیکی، عدد رینولدز و کسر حجمی نانو ذرات بر روی عدد ناسلت پرداخته شده است؛ که نتایج حاصل از این پژوهش نشان می دهد که با افزایش رینولدز ، افت فشار برای نانوسیال اکسید مس افزایش داشته است.

کلیدواژه‌ها

موضوعات


[1] Rimbault, B., Nguyen, C. T., and Galanis, N., "Experimental Investigation of CuO–water Nanofluid Flow and Heat Transfer Inside a Microchannel Heat Sink", International Journal of Thermal Sciences, Vol. 84, pp. 275-292, (2014).

 

[2] Rostami, J., Abbassi, A., and Saffar-Avval, M., "Optimization of Conjugate Heat Transfer in Wavy Walls Micro Channels", Applied Thermal Engineering, Vol. 82, pp. 318-328, (2015).

 

[3] Azizi, Z., Alamdari, A., and Malayeri, M., "Convective Heat Transfer of Cu–water Nanofluid in a Cylindrical Microchannel Heat Sink", Energy Conversion and Management, Vol. 101, pp. 515-524, (2015).

 

[4] Ho, C. J., Wei, L., and Li, Z., "An Experimental Investigation of Forced Convective Cooling Performance of a Microchannel Heat Sink with Al2O3/Water Nanofluid", Applied Thermal Engineering, Vol. 30, No. 2-3, pp. 96-103, (2010).

 

[5] Hasan, M. I., "Investigation of Flow and Heat Transfer Characteristics in Micro Pin Fin Heat Sink with Nanofluid", Applied Thermal Engineering, Vol. 63, No. 2, pp. 598-607, (2014).

 

[6] Chen, C. H., and Ding, C. Y., "Study on the Thermal Behavior and Cooling Performance of a Nanofluid-cooled Microchannel Heat Sink", International Journal of Thermal Sciences, Vol. 50, No. 3, pp. 378-384, (2011).

 

[7] Lelea, D., "The Performance Evaluation of Al2O3/Water Nanofluid Flow and Heat Transfer in Microchannel Heat Sink", International Journal of Heat and Mass Transfer, Vol. 54, No. 17-18, pp. 3891-3899, (2012).

 

[8] Yang, Y. T., and Lai, F. H., "Numerical Study of Flow and Heat Transfer Characteristics of Alumina-water Nanofluids in a Microchannel using the Lattice Boltzmann Method", International Communications in Heat and Mass Transfer, Vol. 38, No. 5, pp. 607-614, (2013).

 [9] Rostami, J., Abbassi, A., and Harting, J., "Heat Transfer by Nanofluids in Wavy Micro Channels", Advanced Powder Technology, Vol. 29, No. 4, pp. 925-933, (2018).

 

[10] Kalteh, M., Abbassi, A., Saffar-Avval, M., Frijns, A., Darhuber, A., and Harting, J., "Experimental and Numerical Investigation of Nanofluid Forced Convection Inside a Wide Microchannel Heat Sink", Applied Thermal Engineering, Vol. 36, pp. 260-268, (2012).

 

 [11] Peyghambarzadeh, S., Hashemabadi, S., Chabi, A., and Salimi, M., "Performance of Water Based CuO and Al2O3 Nanofluids in a Cu–Be Alloy Heat Sink with Rectangular Micro Channels", Energy Conversion and Management, Vol. 86, pp. 28-38, (2014).

 

[12] Mohammed, H., Gunnasegaran, P., and Shuaib, N., "Numerical Simulation of Heat Transfer Enhancement in Wavy Microchannel Heat Sink", International Communications in Heat and Mass Transfer, Vol. 38, No. 1, pp. 63-68, (2011).

 

[13] Vaziee, P., and Abouali, O., "Numerical Study of Forced Convection of Nanofluids in a Microchannel Heat Sink", ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels, American Society of Mechanical Engineers, Darmstadt, Germany, pp. 1077-1083,)2013(.

 

[14] Behzadmehr, A., Saffar-Avval, M., and Galanis, N., "Prediction of Turbulent Forced Convection of a Nanofluid in a Tube with Uniform Heat Flux using a Two Phase Approach", International Journal of Heat and Fluid Flow, Vol. 28, No. 2, pp. 211-219, (2009).

 

[15] Rashidi, M., Hosseini, A., Pop, I., Kumar, S., and Freidoonimehr, N., "Comparative Numerical Study of Single and Two-phase Models of Nanofluid Heat Transfer in Wavy Channel", Applied Mathematics and Mechanics, Vol. 35, No. 7, pp. 831-848, (2014).

 

[16] Manninen, M., Taivassalo, V., and Kallio, S., "On the Mixture Model for Multiphase Flow", Technical Research Centre of Finland, Espoo, Finland, Report, VTT Publications, No. 288, (1996).

 

[17] Schiller, L., "Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung", Z. Vereines Deutscher Inge., Vol. 77, pp. 318-321, (1933).

 

[18] Hwang, K. S., Jang, S. P., and Choi, S. U., "Flow and Convective Heat Transfer Characteristics of Water-based Al2O3 Nanofluids in Fully Developed Laminar Flow Regime", International Journal of Heat and Mass Transfer, Vol. 52, No. 1-2, pp. 193-199, (2009).

 

[19] Zhao, Z. h., and Yu, J. z., "Single-phase Forced Convection Heat Transfer in Micro Rectangular Channels", Chinese Journal of Aeronautics, Vol. 16, No. 1, pp. 7-11, (2003).

 

[20] Alagumurthi, N., and Senthilvelan, T., "Investigation of Heat Transfer in Serpentine Shaped Microchannel using Al2O3/Water Nanofluid", Heat Transfer Asian Research, Vol. 45, pp. 424-433, (2014).

 

 [21] Sivakumar, A., Alagumurthi, N., and Senthilvelan, T., "Investigation of Heat Transfer in Serpentine Shaped Microchannel using Al2O3/Water Nanofluid", Heat Transfer Asian Research, Vol. 45, No. 5, pp. 424-433, (2016).