بررسی تجربی تاثیر نسبت منظر بر ضریب درگ یک لوله بادامکی

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

گروه مهندسی مکانیک، دانشگاه آزاد اسلامی واحد تهران مرکزی

چکیده

در این مطالعه تاثیر نسبت منظر بر ضریب درگ یک لوله بادامکی در جریان عرضی هوا به صورت تجربی بررسی شده است. محدوده اعداد رینولدز بر اساس قطر معادل لوله دایروی 25000 تا 55000 و زاویه حمله صفر و 180 درجه انتخاب شده است. نتایج نشان می دهند که با افزایش نسبت منظر، ضریب درگ لوله بادامکی کمتر می شود بطوریکه ضریب درگ در زاویه حمله صفر و 180 درجه به ترتیب حدود 54 تا 82 درصد و 42 تا 82 درصد نسبت به لوله دایروی با قطر معادل کاهش یافته است.

کلیدواژه‌ها


[1] Zukauskas, A., “Heat Transfer from Tubes in Crossflow”, Advances in Heat Transfer, Vol. 8, pp. 93-160, (1972).

 

[2] Merker, G.P., and Hanke, H., “Heat Transfer and Pressure Drop on the Shell Side of Tube-banks Having Oval-shaped Tubes”, Int. J. Heat Mass Transfer, Vol. 29. No. 12, pp. 1903-1909, (1986).

 

 

[3] Joo, Y., and Dhir. V. K., “An Experimental Study of Drag on a Single Tube and on a Tube in an Array under Two-phase Cross Flow”, In. J. Multiphase Flow, Vol. 20, No. 6, pp. 1009-1019, (1994).

 

[4] Hasan, A., “Thermal-hydraulic Performance of Oval Tubes in a Cross-flow of Air”, Heat and Mass Transfer, Vol. 41, pp. 724-733, (2005).

 

[5] Nouri – Borujerdi, A., and Lavasani, A.M., “Experimental Study of Forced Convection Heat Transfer from a Cam Shaped Tube in Cross Flows”, International Journal of Heat and Mass Transfer, Vol. 50, pp. 2605-2611, (2007).

 

[6] Ibrahim, T.A., and Gomma, A., “Thermal Performance Criteria of Elliptic Tube Bundle in Crossflow”, International Journal of Thermal Sciences, Vol. 48, pp. 2148–2158, (2009).

 

[7] Lavasani, A.M., Bayat, H., and Maarefdoost, T., “Experimental Study of Convective Heat Transfer from In-line Cam Shaped Tube Bank in Crossflow”, Apply Thermal Engineering, Vol. 65, pp. 85-93, (2014).

 

[8] Yahiaoui, T., Ladjedel, O., Imine, O., and Adjlout, L., “Experimental and CFD Investigations of Turbulent Cross-flow in Staggered Tube Bundle Equipped with Grooved Cylinders”, The Brazilian Society of Mechanical Sciences and Engineering, Vol. 38, pp. 163-175, (2015).

 

[9] Lavasani, A.M., Maarefdoost, T., and Bayat, H., “Effect of Blockage Ratio on Pressure Drag and Heat Transfer of a Cam Shaped Tube”, Heat Mass Transfer, Vol. 52, pp. 1935-1942, (2015).

 

[10] Guan-min, Z., Xue-li, L., Nai-xiang, L., Yan-ping, S., and Li-min, L., “Flow and Heat Transfer Characteristics Around Egg-shaped Tube”, Journal of Hydrodynamics, Vol. 27, pp. 76-84, (2015).

 

[11] Gholami, A., Wahid, M., and Mohammed, H.A., “Thermal–hydraulic Performance of Fin-and-oval Tube Compact Heat Exchangers with Innovative Design of Corrugated Fin Patterns”, International Journal of Heat and Mass Transfer, Vol. 106, pp. 573-592, (2017).

 

[12] Deepakkumar, R., and Jayavel, S., “Air Side Performance of Finned-tube Heat Exchanger with Combination of Circular and Elliptical Tubes”, Applied Thermal Engineering, Vol. 119, pp. 360-372, (2017).

 

[13] Mangrulkar, C.K., Dhoble, A.S., Chakrabarty, S.G., and Wankhede, U.S., “Experimental and CFD Prediction of Heat Transfer and Friction Factor Characteristics in Cross Flow Tube Bank with Integral Splitter Plate”, International Journal of Heat and Mass Transfer, Vol. 104, pp. 964-978, (2017).

 

[14] Kumar, R.S., and Jayavel, S., “Influence of Flow Shedding Frequency on Convection Heat Transfer from Bank of Circular Tubes in Heat Exchangers under Cross Flow”, International Journal of Heat and Mass Transfer, Vol. 105, pp. 367-393, (2017).

 

[15] Lei, Y., Zheng, F., Song, S., and Lyu, Y., “Improving the Thermal Hydraulic Performance of a Circular Tube by using Punched Delta-winglet Vortex Generators”, International Journal of Heat and Mass Transfer, Vol. 111, pp. 299-311, (2017).

 

[16] Mohanty, R.L., Swain, A., and Das, M.K., “Thermal Performance of Mixed Tube Bundle Composed of Circular and Elliptical Tubes”, Thermal Science and Engineering Progress, Vol. 5, pp. 492-505, (2018).

 

[17] White, F.M., "Fluid Mechanics", McGraw-Hill, New York, (2005).