بررسی عددی عملکرد سیستم‌های تهویه بازیابی انرژی با شکل غشاء جدید همراه با انتقال جرم و حرارت

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشگاه صنعتی شاهرود

2 گروه سیالات، دانشکده مکانیک و مکاترونیک، دانشگاه صنعتی شاهرود، ایران

3 استادیار دانشکده مهندسی شیمی و مواد، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

مبدل حرارتی بر اساس غشاء وسیله‌ای برای بازیابی حرارت و رطوبت از هوای خروجی داخل ساختمان است. در این مقاله به منظور تشدید انتقال حرارت و جرم و کاهش افت فشار، از ساختارهای جدیدی برای غشاء این مبدل‌ها استفاده شده است. مدلسازی شامل مکانیزم انتقال حرارت و جرم برای جریان آشفته است. نتایج این پژوهش نشان می دهند، غشاء خمیده با پروفیل نیم‌ دایره باعث افزایش انتقال حرارت و جرم در حدود 7% و 6% و غشاء انحنادار باعث بهبود افت فشار تا حدود 50% نسبت به مبدل‌ حرارتی مثلثی می‌شوند.

کلیدواژه‌ها


[1]  Zhang L. Z., "Total Heat Recovery: Heat and Moisture Recovery from Ventilation Air", Nova Science Publishers, New York, U.S.A, (2008).
 
[2]   Zhang L. Z., and Niu J. L., "Energy Requirements for Conditioning Fresh Air and the Long-term Savings with a Membrane-based Energy Recovery Ventilator in Hong Kong", Energy, Vol. 26, No. 2, pp. 119-135, 2001/02/01/, (2001).
 
[3] Sphaier, L. A., and Worek, W. M., "Parametric Analysis of Heat and Mass Transfer Regenerators using a Generalized Effectiveness-NTU Method", International Journal of Heat and Mass Transfer, Vol. 52, No. 9, pp. 2265-2272, 2009/04/01/, (2009).
 
 [4] Yau, Y. H., "The use of a Double Heat Pipe Heat Exchanger System for Reducing Energy Consumption of Treating Ventilation Air in an Operating Theatre a Full Year Energy Consumption Model Simulation", Energy and Buildings, Vol. 40, No. 5, pp. 917-925, 2008/01/01/, (2008).
 
[5]   Weixing Y., Zheng, Y.,  Xiaoru, L., and Xiugan, Y.,"Study of a New Modified Cross-cooled Compact Solid Desiccant Dehumidifier", Applied Thermal Engineering, Vol. 28, No. 17, pp. 2257-2266, 2008/12/01/, (2008).
 
[6]  Kistler, K. R., and Cussler, E. L., "Membrane Modules for Building Ventilation", Chemical Engineering Research and Design, Vol. 80, No. 1, pp. 53-64, 2002/01/01/, (2002).
 
[7]  Zhang L. Z., and Niu J. L., "Effectiveness Correlations for Heat and Moisture Transfer Processes in an Enthalpy Exchanger with Membrane Cores", Journal of Heat Transfer, Vol. 124, No. 5, pp. 922-929, (2002).
 
[8]  Niu, J. L., and Zhang, L. Z., "Membrane-based Enthalpy Exchanger: Material Considerations and Clarification of Moisture Resistance", Journal of Membrane Science, Vol. 189, No. 2, pp. 179-191, 2001/08/15/, (2001).
 
[9]  Zhang, L. Z., and Jiang, Y., "Heat and Mass Transfer in a Membrane-based Energy Recovery Ventilator", Journal of Membrane Science, Vol. 163, No. 1, pp. 29-38, 1999/10/01/, (1999).
 
[10] Zhang, L. Z., "Turbulent Three-dimensional Air Flow and Heat Transfer in a Cross-corrugated Triangular Duct", Journal of Heat Transfer, Vol. 127, No. 10, pp. 1151-1158, (2005).
 
[11] Zhang, L. Z., Liang, C. H., and Pei, L. X., "Heat and Moisture Transfer in Application Scale Parallel-plates Enthalpy Exchangers with Novel Membrane Materials", Journal of Membrane Science, Vol. 325, No. 2, pp. 672-682, 2008/12/01/, (2008).
 
[12] Min, J., and Su, M., "Performance Analysis of a Membrane-based Energy Recovery Ventilator: Effects of Membrane Spacing and Thickness on the Ventilator Performance", Applied Thermal Engineering, Vol. 30, No. 8, pp. 991-997, 2010/06/01/, (2010).
 [13]  Min, J., and Su, M., "Performance Analysis of a Membrane-based Energy Recovery Ventilator: Effects of Outdoor Air State", Applied Thermal Engineering, Vol. 31, No. 17, pp. 4036-4043, 2011/12/01/, (2011).
 
[14] Min, J., and Su, M., "Performance Analysis of a Membrane-based Enthalpy Exchanger: Effects of the Membrane Properties on the Exchanger Performance", Journal of Membrane Science, Vol. 348, No. 1, pp. 376-382, 2010/02/15/, (2010).
 
[15] Zhang, L. Z., and Chen, Z. Y., "Convective Heat Transfer in Cross-corrugated Triangular Ducts under Uniform Heat Flux Boundary Conditions", International Journal of Heat and Mass Transfer, Vol. 54, No. 1, pp. 597-605, 2011/01/15/, (2011).
 
[16] Liu, X. P., and Niu, J. L., "Effects of Geometrical Parameters on the Thermohydraulic Characteristics of Periodic Cross-corrugated Channels", International Journal of Heat and Mass Transfer, Vol. 84, pp. 542-549, 2015/05/01/, (2015).
 
[17] Sabek, S., Tiss, F., Chouikh, R., and Guizani, A., "Numerical Investigation of Heat and Mass Transfer in Partially Blocked Membrane Based Heat Exchanger: Effects of Obstacles Forms", Applied Thermal Engineering, Vol. 130, pp. 211-220, 2018/02/05/, (2018).
 
[18] Engarnevis, A., Huizing, R., Green, S., and Rogak, S., "Heat and Mass Transfer Modeling in Enthalpy Exchangers using Asymmetric Composite Membranes", Journal of Membrane Science, Vol. 556, pp. 248-262, 2018/06/15/, (2018).
 
[19] Zhang, X. R., Zhang, L. Z., Liu, H. M., and Pei, L.X., "One-step Fabrication and Analysis of an Asymmetric Cellulose Acetate Membrane for Heat and Moisture Recovery", Journal of Membrane Science, Vol. 366, No. 1, pp. 158 (2011).
 
[20] Li, Z.X., Zhong, T.S., Niu, J.L., Xiau, F., and Zhang, L.Z., "Conjugate Heat and Mass Transfer in a Total Heat Exchanger with Cross-corrugated Triangular Ducts and One-step Made Asymmetric Membranes", International Journal of Heat and Mass Transfer, Vol. 84, pp. 390-400, 2015/05/01/, (2015).
 
[21] Stasiek, J., Collins, M. W., Ciofalo, M., and Chew, P.E., "Investigation of Flow and Heat Transfer in Corrugated Passages I. Experimental Results", International Journal of Heat and Mass Transfer, Vol. 39, No. 1, pp. 149-164, (1996).
 
[22] Jones, R. M., Harvey, A. D., and Acharya, S., "Two-equation Turbulence Modeling for Impeller Stirred Tanks", Journal of Fluids Engineering, Vol. 123, No. 3, pp. 640-648, (2001).
 
[23] Song, B., and Amano, R., "Applicationof Non-linear k –ω Model to a Turbulent Flow Inside a Sharp U-bend", Computational Mechanics, Vol. 26, pp. 344-351, 10/01, (2000).
 
[24] Zhang, L. Z., "Numerical Study of Periodically Fully Developed Flow and Heat Transfer in Cross-corrugated Triangular Channels in Transitional Flow Regime", Numerical Heat Transfer, Part A: Applications, Vol. 48, No. 4, pp. 387-405, 2005/09/01, (2005).