مطالعه تاثیر شیارشدگی بر رفتار مکانیکی بستر آسفالت تحت بارگذاری متحرک

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه تهران، تهران، ایران

2 عضو هیات علمی دانشکده مهندسی مکانیک دانشگاه تهران

چکیده

شیارشدگی یکی ازاصلی‌ترین اختلالات بوجودآمده دربستر آسفالت است که عملکردآسفالت راتحت‌شعاع قرار می‌دهد. باتوجه به پیچیدگی رفتار آسفالت، دراین مطالعه به شبیه‌سازی پاسخ مکانیکی آن‌تحت اعمال بارگذاری واقعی حرکتی ودو بارگذاری معادل و پالسی که درمطالعات پیشین اغلب بعنوان جایگزین بارگذاری واقعی حرکتی بوده، پرداخته شده است. ازین‌رو یک مدل سازگار ترمودینامیکی ویسکوالاستیک-ویسکوپلاستیک-ویسکوآسیب رابصورت ضمنی گسسته‌سازی زمانی کرده تا درقالب سابروتین UMAT در نرم‌افزار اجزا محدود ABAQUS مورد تحلیل قرار گیرد. درتعداد سیکل بالا، حدود 40درصد اختلاف میزان شیارشدگی دربارگذاری‌های معادل وپالسی نسبت به بارگذاری واقعی حرکتی مشاهده می‌شود. این امر موجب تخمین نادرست عمربسترآسفالت حاصله ازاین دونوع بارگذاری می‌شود.

کلیدواژه‌ها

موضوعات


[1]  Brinson, H.F., and Brinson, L.C., "Polymer Engineering Science and Viscoelasticity", Springer, (2008).
 
[2]  Xu, W., and Li, G.,  "Constitutive Modeling of Shape Memory Polymer Based Self-healing Syntactic Foam", International Journal of Solids and Structures, Vol. 47, No. 9, pp. 1306-1316, (2010).
 
[3]  Darabi, M.K., Al-Rub, R.K.A., Masad, E.A., Huang, C. W., and Little, D.N., "A Thermo-viscoelastic–viscoplastic–viscodamage Constitutive Model for Asphaltic Materials", International Journal of Solids and Structures, Vol. 48, No. 1, pp. 191-207, (2011).
 
[4]  Darabi, M.K., AlRub, R.K.A., Masad, E.A., and Little, D.N., "Thermodynamic Based Model for Coupling Temperaturedependent Viscoelastic, Viscoplastic, and Viscodamage Constitutive Behavior of Asphalt Mixtures", International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 36, No. 7, pp. 817-854, (2012).
 
[5]   Voyiadjis, G.Z., Shojaei, A., and Li, G., "A Generalized Coupled Viscoplastic–viscodamage–viscohealing Theory for Glassy Polymers", International Journal of Plasticity,  Vol. 28, No. 1, pp. 21-45, (2012).
 
[6]  Al-Rub, R.K.A., Darabi, M.K., Little, D.N., and Masad, E.A.,  "A Micro-damage Healing Model that Improves Prediction of Fatigue Life in Asphalt Mixes", International Journal of Engineering Science, Vol. 48, No. 11, pp. 966-990, (2010).
 
[7]  Drescher, A., Kim, J.R., and Newcomb, D.E., "Permanent Deformation in Asphalt Concrete", Journal of Materials in Civil Engineering, Vol. 5, No. 1, pp. 112-128, (1993).
 
[8]  Liao, G., Wang, S., and Shi, Q.,  "Enhancing Anti-rutting Performance of Asphalt Pavement by Dispersing Shear Stresses Within Asphalt Layers", Road Materials and Pavement Design, pp. 1-17, (2016).
 
[9]  Shahsavari, H., Naghdabadi, R., Baghani, M., and Sohrabpour, S., "A Viscoelastic–Viscoplastic Constitutive Model Considering Damage Evolution for Time Dependent Materials: Application to Asphalt Mixes", International Journal of Damage Mechanics, pp. 1056789516658506, (2016).
 
[10] Lemaitre, J., "A Course on Damage Mechanics", Springer Science & Business Media, (2012).
 
[11]  Masad, E., Tashman, L.,  Little, D.,  and Zbib, H., "Viscoplastic Modeling of Asphalt Mixes with the Effects of Anisotropy, Damage and Aggregate Characteristics", Mechanics of Materials, Vol. 37, No. 12, pp. 1242-1256, (2005).
 
[12] Darabi, M.K., Al-Rub, R.K.A., and Little, D.N., "A Continuum Damage Mechanics Framework for Modeling Micro-damage Healing", International Journal of Solids and Structures, Vol. 49, No. 3, pp. 492-513, (2012).
 
[13] Al-Rub, R.K.A., and Darabi, M.K., "A Thermodynamic Framework for Constitutive Modeling of Time-and rate-dependent Materials, Part I: Theory", International Journal of Plasticity, Vol. 34, pp. 61-92, (2012).
 
[14] Darabi, M.K., Al-Rub, R.K.A., Masad, E.A., and Little, D. N., "A Thermodynamic Framework for Constitutive Modeling of Time-and rate-dependent Materials, Part II: Numerical Aspects and Application to Asphalt Concrete", International Journal of Plasticity, Vol. 35, pp. 67-99, (2012).
 
[15] Lu, Y., and Wright, P., "Numerical Approach of Visco-elastoplastic Analysis for Asphalt Mixtures", Computers & Structures, Vol. 69, No. 2, pp. 139-147, (1998).
 
[16] Huang, C. W., Masad, E., Muliana, A.H., and Bahia, H.,  "Nonlinearly Viscoelastic Analysis of Asphalt Mixes Subjected to Shear Loading", Mechanics of Time-dependent materials, Vol. 11, No. 2, pp. 91-110, (2007).
 
[17] Kettil, P., Lenhof, B., Runesson, K., and Wiberg, N. E., "Simulation of Inelastic Deformation in Road Structures Due to Cyclic Mechanical and Thermal Loads", Computers & Structures, Vol. 85, No. 1, pp. 59-70, (2007).
 
[18] Huang, B., Mohammad, L., and Rasoulian, M., "Three-dimensional Numerical Simulation of Asphalt Pavement at Louisiana Accelerated Loading Facility", Transportation Research Record, Journal of the Transportation Research Board, Vol. 1764, pp. 44-58, (2001).
 
[19] Saleeb, A., Liang, R.Y., Qablan, H.A., and Powers, D., "Numerical Simulation Techniques for HMA Rutting under Loaded Wheel Tester", International Journal of Pavement Engineering, Vol. 6, No. 1, pp. 57-66, (2005).
 
[20] Arghavani, J., Auricchio, F.,  and Naghdabadi, R.,  "A Finite Strain Kinematic Hardening Constitutive Model Based on Hencky Strain: General Framework, Solution Algorithm and Application to Shape Memory Alloys", International Journal of Plasticity, Vol. 27, No. 6, pp. 940-961, (2011).
 
[21] Hibbitt, Karlsson, and Sorensen, "ABAQUS: Example Problems Manual", Vol. 2, Hibbitt, Karlsson & Sorensen, (2001).
 
[22] Abu Al-Rub, R.K., Darabi, M.K., Huang, C. W., Masad, E.A., and Little, D.N., "Comparing Finite Element and Constitutive Modelling Techniques for Predicting Rutting of Asphalt Pavements", International Journal of Pavement Engineering, Vol. 13, No. 4, pp. 322-338, (2012).