تحلیل تنش پاد‌صفحه‌ای باریکه از جنس ماده هدفمند حاوی چندین ترک و حفره

نوع مقاله: مقاله علمی پژوهشی

نویسنده

استادیار، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه یزد

چکیده

با استفاده از حل نابجایی پادصفحه ای در باریکه از جنس ماده هدفمند، معادلات انتگرالی تکین از نوع کوشی برای باریکه تضعیف شده بوسیله تعدادی ترک هموار و حفره تحت تغییرشکل پادصفحه‌ای ارائه شده است. این معادلات انتگرالی تکین با روش عددی مناسب برای تکینگی های متفاوت حل می شوند. همچنین میدان تنش در اثر نیروی متمرکز متعادل بر روی مرز باریکه بدست آمده است. چند مثال عددی برای نشان دادن صحت و قابلیت روش حل شده و ضرایب شدت تنش و مقدار تنش محیطی برای حفره ها محاسبه شده است که در اثر ازدیاد پارامتر مدول برشی ماده هدفمند ضریب شدت تنش و تنش محیطی افزایش می‌یابد. 

کلیدواژه‌ها


[1] Nino, M., and Maeda, S., “Recent Development Status of Functionally Gradient Materials”, I. S. I. J. International (Transactions of the Iron and Steel Institute of Japan), Vol. 30, pp. 699-703, (1990).
 
[2] Gibson, R. E., “Some Results Concerning Displacements and Stresses in a Non-homogeneous Elastic Half-space”, Geotechinque, Vol. 17, pp. 58-67, (1967).
 
[3] Kassir, M. K., and Sih, G. C., “Three Dimensional Crack Problems: a New Selection of Crack Solutions in Three-dimensional Elasticity”, Noordhoff International Publishing, Leyden, (1975).
 
[4] Kassir, M. K., “Boussinesq Problems for a Nonhomogeneous Solid”, Proc. ASCE, Journal of Engineering Mechanics Devision, Vol. 98, pp. 457-470, (1972).
 
[5] Dhaliwal, R. S., and Singh, B. M., “On the Theory of Elasticity of a Nonhomogeneous Medium, Journal of Elasticity”, Vol. 8, No. 2, pp. 211-219, (1978).
 
[6] Singh, B. M., and Dhaliwal, R. S., “Asymmetric Problem of a Griffith Crack in a Nonhomogeneous Medium under Shear”, Journal of Elasticity, Vol. 8, No. 3, pp. 313-318, (1978).
 
[7] Erdogan, F., “The Crack Problem for Bonded Nonhomogeneous Materials under Antiplane Shear Loading”, Trans. of the ASME, Journal of Applied Mechanics, Vol. 52, pp. 823-828, (1985).
 
[8] Delale, F., “Mode-III Fracture of Bonded Nonhomogeneous Materials”, Engineering Fracture Mechanics, Vol. 22, No. 2, pp. 213-226, (1985).
 
[9] Erdogan, F., Kaya, A. C., and Joseph, P. F., “The Mode III Crack Problem in Bonded Materials with a Nonhomogeneous Interfacial Zone”, Trans. of the ASME J. Appl. Mech., Vol. 58, pp. 419-427, (1991).
 
[10] Erdogan, F., and Ozturk, M., “Periodic Cracking of Functionally Graded Coatings, International Journal Engineering Sciences”, Vol. 33, No. 15, pp. 2179-2195, (1995).
 
[11] Erdogan, F., “Fracture Mechanics of Functionally Graded Materials”, Composites Engineering, Vol. 5, No. 7, pp. 753-770, (1995).
[12] Erdogan, F., “Fracture Mechanics of Graded Materials”, In: Proc. Functionally Graded Materials 1996, Editors: I. Shiota and M. Y. Miyamoto, pp. 105-112, (1996).
 
[13] Xuyue, W., Duo, W., and Zhenzhu, Z., “On the Griffith Crack in a Nonhomogeneous Interlayer of Adjoining Two Different Elastic Materials”, International Journal of Fracture, Vol. 79, R51-R56, (1996).
 
[14] Ang,.W. T., Clements, D. L., and Cooke, T., “A Hypersingular Boundary Integral Equation for a Class of Antiplane Multiple Crack Problems for Inhomogeneous Elastic Materials”, Communications in Numerical Methods in Engineering, Vol. 15, pp. 183-191, (1999).
 
[15] Chan, Y. S., Paulino, G. H., and Fannjiang, A. C., “The Crack Problem for Nonhomogeneous Materials under Anti-plane Shear Loading- A Displacement Based Formulation”, International Journal of Solids and Structures, Vol. 38, pp. 2989-3005, (2001).
 
[16] Huang, G. Y., Wang, Y. S., and Gross, D., “Fracture Analysis of Functionally Graded Coatings: Antiplane Deformation”, European Journal of Mechanics – A/Solids, Vol. 21, pp. 391-400, (2002).
 
[17] Chung, Y. M., Kim, C., and Choi, H. J., “Anti-plane Shear Behavior of an Arbitrarily Oriented Crack in Bonded Materials with a Nonhomogeneous Interfacial Zone”, Journal of Mechanical Science and Technology, Vol. 17, No. 2, pp. 269-279, (2003).
 
[18] Wang, Y.-S., Huang, G. Y., and Dross, D., “On the Mechanical Modeling of Functionally Graded Interfacial Zone with a Griffith Crack: Anti-plane Deformation”, Trans. of the ASME, Journal of Applied Mechanics, Vol. 70, pp. 676-680, (2003).
 
[19] Wang, B. L., Mai, Y. W., and Sun, Y. G., “Anti-plane Fracture of a Functionally Graded Material Strip”, European Journal of Mechanics – A/Solids, Vol. 22, pp. 357-368, (2003).
 
[20] Fotuhi, A. R., and Fariborz, S. J., “Anti-plane Analysis of a Functionally Graded Strip with Multiple Cracks”, International Journal of Solids and Structures, Vol. 43, pp. 1239-1252, (2006).
 
[21] Yong, H., and Zhou, Y.H., “Analysis of a Mode III Crack Problem in a Functionally Graded Coating-substrate System with Finite Thickness”, International Journal of Fracture, Vol. 141, pp. 459–467, (2006).
 
[22] Choi, H. J., “Stress Intensity Factors for an Oblique Edge Crack in a Coating/Substrate System with a Graded Interfacial Zone under Antiplane Shear”, European Journal of Mechanics – A/Solids, Vol. 26, pp. 337–347, (2007).
 
[23] Ma, L., and Wu, L.Z., “Mode III Crack Problem in a Functionally Graded Coating-Homogeneous Substrate Structure”, Proceedings of the Institution of Mechanical Engineers, Part C-Journal of Mechanical Engineering Science, Vol. 222, pp. 329- , (2008).
 
[24] Li, Y.D., Tan, W., and Lee, K. Y., “Stress Intensity Factor of an Anti-plane Crack Parallel to the Weak/Micro-discontinuous Interface in a Bi-FGM Composite”, Acta Mechanica Solida Sinica, Vol. 21, No. 1, pp. 34-43, (2008).
 
[25] Chen, Y.J., and Chue, C.H., “Mode III Crack Problems of Two Bonded Functionally Graded Strips with Internal Cracks”, International Journal of Solids and Structures, Vol. 46, pp. 331-343, (2009).
 
[26] Yang, Y.H., “Multiple Parallel Symmetric Mode-III Cracks in a Functionally Graded Material Plane”, Journal of Solid Mechanics and Materials Engineering, Vol. 3, No. 5, pp. 819-830, (2009).
 
[27] Chen, Y. Z., Lin, X. Y., and Wang, Z. X., “Antiplane Elasticity Crack Problem for a Strip of Functionally Graded Materials with Mixed Boundary Condition”, Mechanics Research Communications, Vol. 37, pp. 50-53, (2010).
 
[28] Korsunsky, A. M., and Hills, D. A., “The Solution of Crack Problems by using Distributed Strain Nuclei. Proceedings of the Institution of Mechanical Engineers”, Part C-Journal of Mechanical Engineering Science, Vol. 210, No. 1, pp. 23-31, (1996).
 
[29] Hills, D. A., Kelly, P. A., Dai, D. N., and Korsunsky, A. M.,  “Solution of Crack Problems: the Distributed Dislocation Technique”, Klewer Academic Publishers, Dordrecht, (1996).
 
[30] Faal, R. T., Fariborz, S. J., and Daghyani, H. R., “Antiplane Deformation of Orthotropic Strips with Multiple Defects”, Journal of Mechanics of Materials and Structures, Vol. 1, No. 7, pp. 1097-1114, (2006).
 
[31] Abramowitz, M., and Stegun, I. A., “Handbook of Mathematical Functions”, Dover, New York, (1965).