مدلسازی دینامیکی درمان هایپرترمیا با حل همزمان معادلات پخش و جابه‌جایی در تومور

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشجوی دکترا، دانشکده مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران

2 نویسنده مسئول، دانشیار، دانشکده مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران

3 استاد، دانشکده مهندسی مکانیک، دانشگاه صنعتی مالک اشتر، تهران، ایران

چکیده

کارایی درمان هایپرترمیا سیال مغناطیسی(MFH) به عواملی همچون مقدار غلظت و نحوه توزیع انو ذرات مغناطیسی(MNPs) در داخل فضای میان‌بافتی تومور بستگی دارد. یک روش برجسته برای تجمع MNPs در داخل ناحیه تومور، تزریق شریانی است. در این پژوهش، یک مدل عددی پیچیده بر اساس حل معادلات پیشرفته ریاضی، با تزریق MNPs به داخل شریان، انتقال ماده حل شدنی از دیواره رگ‌ها به میان‌بافت به دلیل وجود گرادیان غلظت که ناشی از اختلاف غلظت پلاسما و غلظت میان‌بافتی است منجر به مکانیزم پخش، و حرکت سیال به دلیل گرادیان فشار منجر به انتقال جابه‌جایی MNPs می‌شود، ارائه می‌شود.

کلیدواژه‌ها

موضوعات


 
[1] Salunkhe, A.B., Khot, V.M., and Pawar, S.H., “Magnetic Hyperthermia with Magnetic Nanoparticles: A Status Review”, Current Topics in Medicinal Chemistry, Vol. 14, No. 5, pp. 572-594, (2014).
 
[2] Ng, E.Y.K., and Kumar, S.D., “Physical Mechanism and Modeling of Heat Generation and Transfer in Magnetic Fluid Hyperthermia through Néelian and Brownian Relaxation : A Review”, Biomed Eng Online, Vol. 16, No. 1, pp. 1-22, (2017).
 
[3] Stewart, J.R., “Past Clinical Studiesand FutureDirections1”, Cancer Research, Vol. 44, No. October, pp. 4902-4905, (1984).
 
[4] Zee, J. Van Der, “Review Heating the Patient : A Promising Approach ?”, Annals of Oncology, Vol. 13, No. 8, pp. 1173-1184, (2002).
 
[5]   Javidi, M., Heydari, M., Karimi, A., Haghpanahi, M., Navidbakhsh, M., and Razmkon, A., “Evaluation of the Effects of Injection Velocity and Different Gel Concentrations on Nanoparticles in Hyperthermia Therapy”, Journal of Biomedical Physics and Engineering, Vol. 4, No. 4, pp. 151-162, (2014).
 
[6] Gupta, P.K., Singh, J., and Rai, K.N., “Numerical Simulation for Heat Transfer in Tissues during Thermal Therapy”, Journal of Thermal Biology, Vol. 35, No. 6, pp. 295-301, (2010).
 
[7] Brown, S.L., Hunt, J.W., and Hill, R.P., “Differential Thermal Sensitivity of Tumour and Normal Tissue Microvascular Response During Hyperthermia”, International Journal of Hyperthermia, Vol. 8, No. 4, pp. 501-514, (1992).
 
[8] Westermark, N., “The Effect of Heat Upon Rat‐Tumors 1”, Skandinavisches Archiv für Physiologie, Vol. 52, No. 3, pp. 257-322, (1927).
 
[9] Gerweck, L.E., “At Elevated Modification of Cell Lethality Temperatures the PH Effect”, Radiation Research, Vol. 70, No. 1, pp. 224-235, (2014).
 
[10] Le Renard, P.E., Jordan, O., Faes, A., Petri-Fink, A., Hofmann, H., Rüfenacht, D., Bosman, F., Buchegger, F., and Doelker, E., “The in Vivo Performance of Magnetic Particle-loaded Injectable, in Situ Gelling, Carriers for the Delivery of Local Hyperthermia”, Biomaterials, Vol. 31, No. 4, pp. 691-705, (2010).
 
[11] Ito, A., Shinkai, M., Honda, H., and Kobayashi, T., “Medical Application of Functionalized Magnetic Nanoparticles”, Journal of Bioscience and Bioengineering, Vol. 100, No. 1, pp. 1-11, (2005).
 
[12] Kumar, C.S.S.R., and Mohammad, F., “Magnetic Nanomaterials for Hyperthermia-based Therapy and Controlled Drug Delivery”, Advanced Drug Delivery Reviews, Vol. 63, No. 9, pp. 789-808, (2011).
 
[13]  Yue, K.,Yu, C., Lei, Q., Luo, Y., and Zhang, X., “Numerical Simulation of Effect of Vessel Bifurcation on Heat Transfer in the Magnetic Fluid Hyperthermia”, Applied Thermal Engineering, Vol. 69, No. 1–2, pp. 11-18, (2014).
 
[14]  Tang, Y., dong, Jin, T., and Flesch, R.C.C., “Impact of Different Infusion Rates on Mass Diffusion and Treatment Temperature Field During Magnetic Hyperthermia”, International Journal of Heat and Mass Transfer, Vol. 124, pp. 639-645, (2018).
 
[15] Zakariapour, M., Hamedi, M.H., and Fatouraee, N., “Numerical Investigation of Magnetic Nanoparticles Distribution Inside a Cylindrical Porous Tumor Considering the Influences of Interstitial Fluid Flow”, Transport in Porous Media, Vol. 116, No. 1, pp. 251-274, (2017).
 
[16]  Pavel, M., and Stancu,  A., “Ferromagnetic Nanoparticles Dose Based on Tumor Size in MFH Cancer Therapy”, Vol. 192, No. 2007, pp. 2009, (2009).
 
[17] Tang, Y., and Flesch, R.C.C., “Numerical Investigation of Temperature Field in Magnetic Hyperthermia Considering Mass Transfer and Diffusion in Interstitial Tissue”, Journal of Physics D: Applied Physics, pp. aa9b9a, (2018).
 
[18] Astefanoaei, I., Dumitru, I., Chiriac, H., and Stancu, A., “Thermofluid Analysis in Magnetic Hyperthermia using Low Curie Temperature Particles”, IEEE Transactions on Magnetics, Vol. 52, No. 7, (2016).
 
[19] Soltani, M., and Chen, P., “Effect of Tumor Shape and Size on Drug Delivery to Solid Tumors”, Journal of Biological Engineering, Vol. 6, No. 4, pp. 4, (2012).
 [20] Sefidgar, M., Soltani, M., Raahemifar, K., Bazmara, H., Nayinian, S., and Bazargan, M., “Effect of Tumor Shape, Size, and Tissue Transport Properties on Drug Delivery to Solid Tumors”, Journal of Biological Engineering, Vol. 8, No. 1, pp. 12, (2014).
 
[21] Steuperaert, M., Falvo D’Urso Labate, G., Debbaut, C., De Wever, O., Vanhove, C., Ceelen, W., and Segers, P., “Mathematical Modeling of Intraperitoneal Drug Delivery: Simulation of Drug Distribution in a Single Tumor Nodule”, Drug Delivery, Vol. 24, No. 1, pp. 491-501, (2017).
 
[22] Sefidgar, M., Soltani, M., Raahemifar, K., and Bazmara, H., “Effect of Fluid Friction on Interstitial Fluid Flow Coupled with Blood Flow Through Solid Tumor Microvascular Network”, Computational and Mathematical Methods in Medicine, Vol. 2015, No. Article ID 673426, (2015).
 
[23] Soltani, M., Sefidgar, M., Bazmara, H., Casey, M.E., Subramaniam, R.M., Wahl, R.L., and Rahmim, A., “Spatiotemporal Distribution Modeling of PET Tracer Uptake in Solid Tumors”, Annals of Nuclear Medicine, Vol. 31, No. 2, pp. 109-124, (2017).
 
[24] Michel, C.C., “Starling: The Formulation of His Hypothesis of Microvascular Fluid Exchange and Its Significance after 100 Years”, Experimental Physiology, Vol. 82, No. 1, pp. 1-30, (1997).
 
[25] Ribba, B., Saut, O., Colin, T., Bresch, D., Grenier, E., and Boissel, J.P., “A Multiscale Mathematical Model of Avascular Tumor Growth to Investigate the Therapeutic Benefit of Anti-invasive Agents”, Journal of Theoretical Biology, Vol. 243, No. 4, pp. 532-541, (2006).
 
[26] Vafai, K., "POROUS Media, Application in Biological Systems and Biotechnology", Taylor and Francis, New York, (2011).
 
[27] Dormann, S., and Deutsch, A., “Modeling of Self-organized Avascular Tumor Growth with a Hybrid Cellular Automaton”, in Silico Biology, Vol. 2, No. 3, pp. 393-406, (2002).
 
[28] Arifin, D.Y., Wang, C., and Smith, K.A., “Patient-specific Chemotherapeutic Drug Delivery to Brain Tumors Brain Tissue Tumor Ventricle”, Mimics Innovation Awards, pp. 1-9, (2007).
 
[29] Alazmi, B., and Vafai, K., “Constant Wall Heat Flux Boundary Conditions in Porous Media under Local Thermal Non-equilibrium Conditions”, International Journal of Heat and Mass Transfer, Vol. 45, No. 15, pp. 3071-3087, (2002).
 
[30] Khanafer, K., Bull, J.L., Pop, I., and Berguer, R., “Influence of Pulsatile Blood Flow and Heating Scheme on the Temperature Distribution During Hyperthermia Treatment”, International Journal of Heat and Mass Transfer, Vol. 50, No. 23–24, pp. 4883-4890, (2007).
 
[31] Sefidgar, M., Soltani, M., Raahemifar, K., Sadeghi, M., Bazmara, H., Bazargan, M., and Mousavi Naeenian, M., “Numerical Modeling of Drug Delivery in a Dynamic Solid Tumor Microvasculature”, Microvascular Research, Vol. 99, No. 0, pp. 43-56, (2015).
 
[32] Shojaee, P., Niroomand-Oscuii, H., Sefidgar, M., and Alinezhad, L., “Effect of Nanoparticle Size, Magnetic Intensity, and Tumor Distance on the Distribution of the Magnetic Nanoparticles in a Heterogeneous Tumor Microenvironment”, Journal of Magnetism and Magnetic Materials, Vol. 498, pp. 166089, (2020).
 
 [33] Patlak, C.S., Goldstein, D.A., and Hoffman, J.F., “The Flow of Solute and Solvent Across a Two-Membrane System”, Journal of Theoretical Biology, Vol. 5, No. 3, pp. 426-442, (1963).
 
[34] Orlanski, I., “A Simple Boundary Condition for Unbounded Hyperbolic Flows”, Journal of Computational Physics, Vol. 21, No. 3, pp. 251-269, (1976).
 
[35]  Tenn, C.C., Mikler, J.R., Hill, I., Weatherby, K., Garrett, M., Caddy, N., Stewart, C., Huang, C.N.K.Y., Troyer, J., Lundy, P.M., and Sawyer, T.W., “Recombinant Human Butyrylcholinesterase as a Therapeutic Agent to Counteract the Effects of VX Toxicity in Domestic Swine”, J. Med CBR Def, Vol. 6, pp. 1-20, (2008).
 
[36] Sefidgar, M., Soltani, M., Bazmara, H., Mousavi, M., Bazargan, M., and Elkamel, A., “Interstitial Flow in Cancerous Tissue : Effect of Considering Remodeled Capillary Network”, Journal of Tissue Science & Engineering, Vol. 4, No. 3, pp. 1-8, (2014).
 
[37] Pennes, H.H., “Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm”, Journal of Applied Physiology, Vol. 1, No. 2, pp. 93-122, (1948).
 
[38] Rosensweig, R.E., “Heating Magnetic Fluid with Alternating Magnetic Field”, Journal of Magnetism and Magnetic Materials, Vol. 252, pp. 370-374, (2002).
 
[39] Fortin, J.P., Wilhelm, C., Servais, J., Ménager, C., Bacri, J.C., and Gazeau, F., “Size-sorted Anionic Iron Oxide Nanomagnets as Colloidal Mediators for Magnetic Hyperthermia”, Journal of the American Chemical Society, Vol. 129, No. 9, pp. 2628-2635, (2007).
 
[40] Kallumadil, M., Tada, M., Nakagawa, T., Abe, M., Southern, P., and Pankhurst, Q.A., “Suitability of Commercial Colloids for Magnetic Hyperthermia”, Journal of Magnetism and Magnetic Materials, Vol. 321, No. 10, pp. 1509-1513, (2009).
 
[41] Laurent, S., Dutz, S., Häfeli, U.O., and Mahmoudi, M., “Magnetic Fluid Hyperthermia: Focus on Superparamagnetic Iron Oxide Nanoparticles”, Advances in Colloid and Interface Science, Vol. 166, No. 1–2, pp. 8-23, (2011).
 
[42] Huber, D.L., “Synthesis, Properties, and Applications of Iron Nanoparticles”, Small, Vol. 1, No. 5, pp. 482-501, (2005).
 
[43] Cervadoro, A., Giverso, C., Pande, R., Sarangi, S., Preziosi, L., Wosik, J., Brazdeikis, A., and Decuzzi, P., “Design Maps for the Hyperthermic Treatment of Tumors with Superparamagnetic Nanoparticles”, PLoS ONE, Vol. 8, No. 2, pp. 1-14, (2013).
 
[44] Gupta, P., Singh, J., and Rai, K., “Numerical Simulation for Heat Transfer in Tissues during Thermal Therapy”, J. Therm Biol, Vol. 35, No. 6, pp. 295-301, (2010).