کاوش تجربی اثر بهره‌برداری بر خواص مکانیکی و ارتعاشی DIN X12CrNi2521 در شرایط فوق گرمایش

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشجو دکترا، دانشکده مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی، تهران

2 دانشیار، دانشکده مهندسی مکانیک و انرژی،دانشگاه شهید بهشتی، تهران

چکیده

ایده ‌اصلی این پژوهش، برپایه ارتباط بین خواص ارتعاشی و مکانیکی ماده و تغییرات ساختاری آن در اثر بهره‌برداری در دماهای بالا استوار است. در این راستا نمونه‌هایی از فولاد DIN X12CrNi2521 در 3 دمای کاری مختلف به مدت‌ 3 شبانه روز پیرسازی شدند که منجر به تشکیل رسوبات و افزایش فاز سیگما گردید. با مقایسه نتایج حاصل از آزمون‌های تجربی، شاهد افزایش فرکانس طبیعی 5 مود اول، ضرایب میرایی، مدول کشسانی و سختی ویکرز با افزایش دمای ‌پیرسازی خواهیم بود. این پژوهش، امکان‌سنجی تدوین روشی نوین و غیرمخرب جهت تخمین عمر باقیمانده را با استفاده از ضرایب میرایی در شرایط بهره‌برداری فوق ‌گرمایش قطعات‌ نیروگاهی بررسی می‌نماید.

کلیدواژه‌ها

موضوعات


[1] Hamisi, M., and Moussavi Torshizi, S. E., "Experimental Study of Aging Effect on Mechanical and Vibrational Properties on Carbon Steel SA516, Modares Mechanical Engineering, Vol. 18, No. 04, pp. 832-838, (2018).
[2] Naffakh, H., Shamanian, M., and Ashrafizadeh, F., "Influence of Artificial Aging on Microstructure and Mechanical Properties of Dissimilar Welds between 310 Stainless Steel and INCONEL 657", Metallugical and Materials Transactions A, Vol. 39A, pp. 2403-2415, (2008).
[3] Rahnema, P., Abdollahzade, A., and Mofid, M. A., "The Effect of Heat Treatment Parameters on Mechanical Properties of D6AC Steel", Modares Mechanical Engineering, Vol. 9, No. 37, pp. 83-92, (2009).
[4] Mohammadi, R., Saeedifar, M., Fotohi, M., Teymori, C., and Ahmadi Najafabadi, M., "Determination of Fracture Toughness of Heat Treated AISI D2 Steel using Finite Element and Acoustic Emission Methods", Modares Mechanical Engineering, Vol. 14, No. 11, pp. 1-8, (2015).
[5] Salemi, A., Abdollah, A., and Mirzaee, M., "Comparison of the Mechanical Properties of the Microstructure of the Returned Martensitic and the Microstructure of Ferrite-binatemartensitic in Steel", Modares Mechanical Engineering, Vol. 10, No. 1, pp. 63-76, (2010).
[6] Bahrami, A., Ashrafi, A., Rafiaei, S.M., and Yazdanmehr, M., "Sigma Phase-induced Failure of AISI 310 Stainless Steel Radiant Tubes", Engineering Failure Analysis, Vol. 82, pp. 56-63, (2017).
[7] Vitek, J. M., and David, S. A., "The Sigma Phase Transformation in Austenitic Stainless Steels", Welding Research Supplement, Vol. 12, pp. 106-114, (1986).
[8] Barcik, J., "The Kinetics of σ-phase Precipitation in AISI310 and AISI316 Steels", Metallurgical and Materials Transactions A, Vol. 14, No. 3, pp. 635-641, (1983).
[9] Kington, A. V., and Noble, F. W., "σ Phase Embrittlement of a Type 310 Stainless Steel", Materials Science and Engineering A, Vol. 138, No. 2, pp. 259-266, (1991).
[10] Perron, A., Toffolon-Masclet, C., Ledoux, X., Buy, F., Guilbert, T., Urvoy, S., Bosonnet, S., Marini, B., Cortial, F., and Texier, G., “Understanding Sigma-phase Precipitation in a Stabilized Austenitic Stainless Steel (316Nb) through Complementary CALPHAD-based and Experimental Investigations”, Acta Mater, Vol. 79, pp. 16-29, (2014).
[11] Sieurin, H., and Sandstro, R., "Sigma Phase Precipitation in Duplex Stainless Steel 2205", Materials Science and Engineering A, Vol. 444, pp. 271-276, (2007).
[12] Guimaraes, A. A., and Mei, P. R., "Precipitation of Carbides and Sigma Phase in AISI Type 446 Stainless Steel under Working Conditions", Journal of Materials Processing Technology, Vol. 155-156, pp. 1681-1689, (2004).
[13] Brozda, J., and Madej, J., "Cracking of the Mixing Chamber Caused by Sigma Phase Precipitation in Austenitic Steel Welded Joints", Engineering Failure Analysis, Vol. 15, No. 4, pp. 368-377, (2008).
[14] Pardal, J. M., Carvalho, S. S., Barbosa, C., Montenegro, T. R., and Tavares, S. S. M., "Failure Analysis of AISI 310S Plate in an Inert Gas Generator used in Off-shore Oil Platform", Engineering Failure Analysis, Vol. 18, No. 6, pp. 1435-1444, (2011).
[15] Nilssom, J.O., Kangas, P., Karlsson, T., and Wilson, A., "Mechanical Properties, Microstructural Stability and Kinetcs of σ Phase Formation in a 29Cr–6Ni–2Mo–0.38N Superduplex Stainless Steel", Metallurgical and Materials Transactions A, Vol. 31, No. 1, pp. 35-45, (2000).
[16] Lopez, N., Cid, M., and Puiggali, M., "Influence of σ-phase on Mechanical Properties and Corrosion Resistance of Duplex Stainless Steel", Corros Science, Vol. 41, No. 8, pp. 1615-1631, (1999).
[17] Gunn, R.N., "Duplex Stainless Steels-microstructure, Properties and Applications", Cambridge, Abbington Publishing, (2003).
[18] Brózda, J., and Madej, J., "Cracking of the Mixing Chamber Caused by Sigma Phase Precipitation in Austenitic Steel Welded Joints", Engineering Failure Analysis, Vol. 15, No. 4, pp. 368-377, (2008).
[19] Pandey, R.K., "Failure Analysis of Styrene Reactor Tubes", Engineering Failure Analysis, Vol. 13, No. 8, pp. 1314-1325, (2006).
[20] Villanueva, D. M. E., Junior, F. C. P., Plaut, R. L., and Padilha, A. F., "Comparative Study on Sigma Phase Precipitation of Three Types of Stainless Steels: Austenitic, Superferritic and Duplex", Materials Science and Technology, Vol. 22, No. 9, pp. 1098-1104, (2006).
[21] Hsieh, C. C., and Wu, W., "Overview of Intermetallic Sigma (σ) Phase Precipitation in Stainless Steels", International Scholarly Research Network, Vol. 2012, pp. 1-16, (2012). https://doi.org/10.5402/2012/732471
[22] Shek, C.H., Li, D., Wong, K.W., and Lai, J.K.L., "Creep Properties of Aged Stainless Steels Containing σ Phase", Materials Science and Engineering A, Vol. 266, No. 1-2, pp. 30-36, (1999).
[23] Tseng, C. C., Shen, Y., Thompson S. W., Mataya, M. C., and Krauss, G., "Fracture and the Formation of Sigma Phase, M23C6, and Austenite from Delta-ferrite in an AlSl 304L Stainless Steel", Metallurgical and Materials Transactions A, Vol. 25, No. 6, pp. 1147-1158, (1994).
[24] Singiresu, S. Rao., "Mechanical Vibrations", 5th ed, New York, Prentice Hall, (2011).
[25] Singiresu, S. Rao., "Vibration of Continuous Systems", New Jersey, John Wiley & Sons, (2007).
[26] Bertha, A., and Roesset, J. M., "Analytical Evaluation of the Accuracy of the Half-power Bandwidth Method to Estimate Damping Ratios in a Structure, SHMII-4 2009", Proceedings of the 4th International Conference on Structural Health Monitoring of Intelligent Infrastructure, Winnipeg, Manitoba, Canada, ISHMII; pp. 211-219, (2009).
[27] Maringer, Robert E., "Damping Capacity of Materials", Ohio, Battelle Memorial Institute, Columbus Laboratories, (1966).
[28] Mandal, N. K., Rahman, R. A., and Leong, M. S., "Experimental Study on Loss Factor for Corrugated Plates by Bandwidth Method", Ocean Engineering, Vol. 31, No. 10, pp. 1313-1323, (2004).
[29] Tavares, S. S. M., Moura, V., da Costa, V. C., Ferreira, M. L. R., and Pardal, J. M., Microstructural Changes and Corrosion Resistance of AISI 310S Steel Exposed to 600– 800 °C", Materials Characterization, Vol. 60, pp. 573-578, (2009).
[30] Parrens, C., Lacaze, J., Malard, B., Jean-Luc, D., and Poquillon, D., "Isothermal and Cyclic Aging of 310S Austenitic Stainless Steel", Metall Mater Trans A, Vol. 48, No. 6, pp. 2834-2843, Metallurgical and Materials Transactions A, Vol. 48, pp. 2834-2843, (2017).
[31] El-Morsy, A. W., and IZ Farahat, A., "Effect of Aging Treatment on the Damping Capacity and Mechanical Properties of Mg-6Al-1Zn Alloy", The Scientific World Journal, Vol. 2015, pp. 1-8, (2015).