بررسی پارامترهای مؤثر بر کمانش پوسته‌‌های استوانه‌‌ای تقویت ‌‌‌‌‌‌‌‌‌‌‌‌‌‌شده تحت بار محوری

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 استادیار، گروه مهندسی مکانیک، دانشکده فنی و مهندسی دانشگاه قم، قم

2 کارشناسی، گروه مهندسی مکانیک ،دانشکده فنی و مهندسی دانشگاه قم، قم

چکیده

در این تحقیق، به بررسی برخی پارامترهای مؤثر بر بار کمانش پوسته­ های استوانه­ای تقویت ­شده پرداخته شده است. این پارامترها شامل نوع اتصال تقویتی­ ها به پوسته، تعداد، ضخامت و شکل سطح مقطع تقویت‌کننده‌های طولی و محیطی، ضخامت پوسته، شکل، نسبت نقص و اندازه حفره ایجاد شده در پوسته می­باشد. بدین منظور از دو روش تحلیلی و عددی استفاده شده است. در روش تحلیلی، از روش انرژی و در روش عددی از نرم افزار آباکوس استفاده شده است. در این پژوهش افزون بر کارهای گذشته، نحوه اتصال تقویتی‌ها به پوسته، اثر پارامتر نسبت نقص دو شکل حفره بیضی و مستطیل و نیز اثر برخی پارامترهای مربوط به تقویت ­کننده ­های طولی و محیطی مانند اثر شکل سطح مقطع و اثر تعداد آن­ها بر بار کمانش به طور مجزا بررسی شده است.

کلیدواژه‌ها

موضوعات


[1] Singer, J., Baruch, M., and Harari, O., “On the Stability of Eccentrically Stiffened Cylindrical Shells under Axial Compression”, International Journal of Solids and Structures, Vol. 3, pp. 445-470, (1967).
[2] Najafizadeh, M.M., Hasani, A., and Khazaeinejad, P., “Mechanical Stability of Functionally Graded Stiffened Cylindrical Shells”, Applied Mathematical Modelling, Vol. 33, pp. 1151-1157, (2009).
[3] Yoosefzadeh, S., Isvandzibaei, M.R., and Gheysari, M., “Buckling of FGM Thick-walled Cylindrical Shell Supported with Third Order Shear Theory under Uniform Axial and Lateral Loads”, Modares Mechanical Engineering, Vol. 17, pp. 373-385, (2017). (In Persian).
[4] Shahgholian, D., Raafat, M.R., and Rahimi, G.H., “Prediction of the Critical Buckling Load of Composite Cylindrical Shells by using Vibration Correlation Technique”, Journal of Science and Technology of Composites, Vol. 5, pp. 359-368, (2018).
[5] Nobakht Namin, A., “Buckling of Stiffened Thin-walled Cylindrical Shells under Axial Compression with Symmetrical Imperfections”, Journal of Structural Engineering and Geotechniques, Vol. 2, pp. 19-28, (2012).
[6] Jiao, P., Chen, Z., Xu, F., Tang, X., and Su, W., “Effects of Ringed Stiffener on the Buckling Behavior of Cylindrical Shells with Cutout under Axial Compression: Experimental and Numerical Investigation”, Thin-Walled Structures, Vol. 123, pp. 232-243, (2018).
[7] Wen, C., Wen-Min, R., and Wei, Z., “Buckling Analysis of Ring-stiffened Cylindrical Shells with Cutouts by Mixed Method of Finite Strip and Finite Element”, Computers & Structures, Vol. 53, pp. 811-816, (1994).
[8] Tian, J., Wang, C., and Swaddiwudhipong, S., “Elastic Buckling Analysis of Ring-stiffened Cylindrical Shells under General Pressure Loading via the Ritz Method”, Thin-Walled Structures, Vol. 35, pp. 1-24, (1999).
[9] Ghasemi, B., and Jafari, A.A., “The Survey of the Effect of Stiffeners on Buckling Load of Composite Cylindrical Shell”, International Journal of Engineering Science, Vol. 19, pp. 139-149, (2008). (In Persian).
[10] Shahani, A.R., Moayeri, H., and Salari, M., “Fatigue Analysis of a Reinforced Cylindrical Shell under Multi-axial Loading”, Modares Mechanical Engineering, Vol. 13, pp. 15-29, (2014). (In Persian).
[11] Talezadehlari, A., and Rahimi, G.H., “Buckling Analysis of Perforated Composite Cylindrical Shell using Generalized Differential Quadrature Method (GDQM)”, Modares Mechanical Engineering, Vol. 17, pp. 385-396, (2018). (In Persian).
[12] Arefi, M., Rahimi, G.H., and Khoshgoftar, M.J., “Exact Solution of a Thick Walled Functionally Graded Piezoelectric Cylinder under Mechanical, Thermal and Electrical Loads in the Magnetic Field”, Smart Structures and Systems, Vol. 9, pp. 427-439, (2012).
[13] Arefi, M., Rahimi, G.H., and Khoshgoftar, M.J., “Exact Solution of Functionally Graded Thick Cylinder with Finite Length under Longitudinally Non-uniform Pressure”, Mechanics Research Communications, Vol. 51, pp. 61-66, (2013).
[14] Loghman, A., Faegh, R.K., and Arefi, M., “The Effect of Axially Variable Thermal and Mechanical Loads on the 2D Thermoelastic Response of FG Cylindrical Shell”, Journal of Therm Stresses, Vol. 39, pp. 1539-1559, (2016).
[15] Abbasi, A.R., Arefi, M., and Vaziri Sereshk, M.R., “Two-dimensional Thermoelastic Analysis of FG Cylindrical Shell Resting on the Pasternak Foundation Subjected to Mechanical and Thermal Loads Based on FSDT Formulation”, Journal of Therm Stresses, Vol. 39, pp. 554-570, (2016).
[16] Arefi, M., Karroubi, R., and Irani-Rahaghi, M., “Free Vibration Analysis of Functionally Graded Laminated Sandwich Cylindrical Shells Integrated with Piezoelectric Layer”, Applied Mathematics and Mechanics, Vol. 37, pp. 821-834, (2016).
[17] Arefi, M., Mohammadi, M., Tabatabaeian, A., Dimitri, R., and Tornabene, F., “Twodimensional Thermo-elastic Analysis of FG-CNTRC Cylindrical Pressure Vessels”, Steel and Composite Structures, Vol. 27, pp. 525-536, (2018).
[18] Sadeghifar, M., Bagheri, M., and Jafari, A., “Multiobjective Optimization of Orthogonally Stiffened Cylindrical Shells for Minimum Weight and Maximum Axial Buckling Load”, Thin-Walled Structures, Vol. 48, pp. 979-988, (2010).
[19] Lam, K., and Loy, C., “Influence of Boundary Conditions and Fiber Orientation on the Natural Frequencies of Thin Orthotropic Laminated Cylindrical Shells”, Composite Structures, Vol. 31, pp. 21-30, (1995).
[20] Lam, K., and Loy, C., “Influence of Boundary Conditions for a Thin Laminated Rotating Cylindrical Shell”, Composite Structures, Vol. 41, pp. 215-228, (1998).
[21] Ghorbanpour Arani, A., Loghman, A., Mosallaie Barzoki, A., and Kolahchi, R., “Elastic Buckling Analysis of Ring and Stringer-stiffened Cylindrical Shells under General Pressure and Axial Compression via the Ritz Method”, Journal of Solid Mechanics, Vol. 2, pp. 332-347, (2010).
[22] Swift, T., “Fracture Analysis of Stiffened Structure in Damage Tolerance of Metallic Structures: Analysis Methods and Applications”, ASTM International, pp. 69-107, (1984).