تحلیل خمشی ورق دایروی/حلقوی کامپوزیتی متخلل تقویت شده با گرافن با تئوری سه بعدی الاستیسیته

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده فنی مهندسی مکانیک، دانشگاه تربیت مدرس، تهران

2 استاد، دانشکده فنی مهندسی مکانیک، دانشگاه تربیت مدرس، تهران

چکیده

در این پژوهش، تحلیل رفتار خمشی ورق کامپوزیتی حلقوی/دایروی متخلل تقویت شده با گرافن با استفاده از تئوری سه بعدی الاستیسیته و همچنین روش مربعات تفاضلی مورد مطالعه قرار گرفته است. ورق متخلل براساس آرایش یکنواخت و غیر یکنواخت توزیع گرافن در ماتریس پلیمر که شامل تخلخل داخلی می باشد، ساخته شده است. مدل میکرومکانیک هالپین تسای، قانون اختلاط و خصوصیات مکانیکی فوم های سلول باز پلیمر برای تعیین مدول الاستیسیته و چگالی نانوکامپوزیت استفاده شده است. معادلات حاکم بر ورق دایروی/حلقوی با استفاده از تئوری سه بعدی الاستیسیته به دست آمده است. در این مقاله، تاثیر توزیع مختلف صفحات گرافنی، چگالی و اندازه حفره های داخلی، کسر وزنی گرافن و شرایط مرزی مختلف بر رفتار خمشی ورق دایروی/حلقوی متخلخل مورد مطالعه قرار گرفته است.

کلیدواژه‌ها

موضوعات


[1] Potts, J.R., Dreyer, D.R., Bielawski, C.W., and Ruoff, R.S., "Graphene-based Polymer Nanocomposites", Polymer, Vol. 52, No. 1, pp. 5-25, (2011).
 
[2] Rafiee, M.A., Rafiee, J., Srivastava, I., Wang, Z., Song, H., Yu, Z., and Koratkar, N., "Fractureand Fatigue in Graphene Nanocomposites", Small, Vol. 6, No. 2, pp. 179-183, (2010).
 
[3] Sobhy, M., "Generalized Two-variable Plate Theory for Multi-layered Graphene Sheets with Arbitrary Boundary Conditions", ACTA Mechanica, Vol. 225, No. 9, pp. 2521-2538, (2014).
 
[4] Sobhy, M., "Levy-type Solution for Bending of Single-layered Graphene Sheets in Thermal Environment using the Two-variable Plate Theory", International Journal of Mechanical Sciences, Vol. 90, pp. 171-178, (2015).
 
[5] Wang, Y., Feng, C., Zhao, Z., and Yang, J., "Buckling of Graphene Platelet Reinforced Composite Cylindrical Shell with Cutout", International Journal of Structural Stability and Dynamics, Vol. 18, No. 03, Article Number. 1850040, (2018).
 
[6] Wang, S., Tambraparni, M., Qiu, J., Tipton, J., and Dean, D., "Thermal Expansion of Graphene Composites", Macromolecules, Vol. 42, No. 14, pp. 5251-5255, (2009).
 
[7] Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z., and  Koratkar, N., "Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content", ACS Nano, Vol. 3, No. 12, pp. 3884-3890, (2009).
 
[8] Alibeigloo, A., "Three-dimensional Free Vibration Analysis of Multi-layered Graphene Sheets Embedded in Elastic Matrix", Journal of Vibration and Control, Vol. 19, No. 16, pp. 2357-2371, (2013).
 
[9] Ghaderi, A., "Thermal Properties of Graphene and Multilayer Graphene: Applications in Thermal Interface Materials", Solid State Communications, Vol. 152, No. 15, pp. 1331-1340, (2012).
 
[10] Hosseini-Abbandanak, S.N., Siadati, M.H., and Eslami-Farsani, R., "Effects of  Functionalized Graphene Nanoplatelets on the Flexural Behaviors of Basalt Fibers/Epoxy Composites", Journal of Science and Technology of Composites, Vol. 5, No. 3, pp. 315-324, (2018). ( in Persian)
 
[11] Guan, X., Sok, K., Wang, A., Shuai, C., Tang, J., and  Wang, Q., "A General Vibration Analysis of Functionally Graded Porous Structure Elements of Revolution with General Elastic Restraints", Composite Structures, Vol. 209, pp. 277-299, (2019).
 
[12] Wang, T., Ma, L.S., and Shi, Z.F., "Analytical Solutions for Axisymmetric Bending of Functionally Graded Circular/Annular Plates", ACTA Mechanica Sinica, Vol. 36(3), pp. 348-353, (2004).
 
[13] Arshid, E., and Khorshidvand, A.R., "Vibrations Analysis of a Solid Circular Plate Made of Porous Material", System Dyanamics and Solid Mechanics, Iranian Journal of Mechanical Engineering, Vol. 19(1), No. 46, pp. 78-100, (2016).
 
[14] Nie, G., and  Zhong, Z., "Axisymmetric Bending of Two-directional Functionally Graded  Circular and Annular Plates", ACTA Mechanica Solida Sinica, Vol. 20, No. 4, pp. 289-295, (2007).
 
[15] Bisheh, H., and Alibeigloo, A., "Static Analysis of Graphene Reinforced Composite Circular  Plate", The 27th Annual International Conference of Iranian Society of Mechanical Engineers-ISME 2019, 30 April- 2 May, Tehran, Iran, (2019).
 
[16] Yun, W., Rongqiao, X., and  Haojiang, D., "Three-dimensional Solution of Axisymmetric Bending of Functionally Graded Circular Plates", Composite Structures, Vol. 92, No. 7, pp. 1683-1693, (2010).
 
[17] Alibeigloo, A., and  Simintan, V., "Elasticity Solution of Functionally Graded Circular and Annular Plates Integratedwith Sensor and Actuator Layers using Differential Quadrature", Composite Structures, Vol. 93, No. 10, pp. 2473-2486, (2011).
 
[18] Yousefzadeh, S., Jafari, A., and Mohammadzadeh, A., "Hydroelastic Vibration Analysis of Functionally Graded Circular Plate in Contact with Bounded Fluid by Ritz Method", Journal of Science and Technology of Composites, Vol. 5, No. 4, pp. 529-538, (2019). ( in Persian)
 
[19] Arteshyar, K., and Mohieddin Ghomshei, M.M., "Free Vibration Analysis of Thin Annular Plates Integrated with Piezoelectric Layers using Differential Quadrature Method", Iranian Journal of Mechanical Engineering Transactions of the ISME, Vol. 20(1) No. 32, pp. 71-93 (2019).
 
[20] Yang, J., Chen, D., and Kitipornchai, S., "Buckling and Free Vibration Analyses of Functionally Graded Graphene Reinforced Porous Nanocomposite Plates Based on Chebyshev Ritz Method", Composite Structures, Vol. 193, pp. 281-294, (2018).
 
[21]  Affdl, J.H., and  Kardos, J., "The Halpin‐Tsai Equations: A Review", Polymer Engineering and Science, Vol. 16, No. 5, pp. 344-352, (1976).
 
[22]  Shu, C., and  Richards, B.E., "Application of Generalized Differential Quadrature to Solve Two‐dimensional Incompressible Navier‐Stokes Equations", International Journal for Numerical Methods in Fluids, Vol. 15, No. 7, pp. 791-798, (1992).