ارتعاشات غیر خطی تیر بر بستر الاستیک غیرخطی تحت بارهای حرارتی بر اساس روش اغتشاشات هوموتروپی

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

1 استاد دانشکده مهندسی مکانیک، دانشگاه تبریز

2 دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه تبریز

چکیده

ارتعاشات آزاد با دامنه بزرگ تیر اولر- برنولی با تکیه گاههای نامتحرک واقع بر بستر الاستیک غیرخطی و تحت بارهای حرارتی بررسی شده است. با استفاده از اصل همیلتون، معادله حاکم بر سیستم استخراج میشود. با اعمال روش گالرکین، معادله دیفرانسیل غیرخطی معمولی سیستم به دست آمده و به دلیل بزرگ بودن ضریب جمله غیرخطی، روش حل ترکیبی اغتشاشات و هوموتوپی اعمال شده و دقت روش مذکور نیز مورد بررسی قرار گرفته است. به منظور صحت‌سنجی، نتایج به دست آمده از حل حاضر با نتایج موجود در ادبیات فن مقایسه شده است. تأثیر ضرایب سفتی بستر، اثر بارهای حرارتی و نیز تأثیر مودهای ارتعاشی بر فرکانس غیرخطی و نسبت فرکانسی سیستم مورد تحلیل قرار گرفته است.

کلیدواژه‌ها

موضوعات


[1] He, J.H., "Homotopy Perturbation Technique", Computer Methods in Applied Mechanical Engineering, Vol. 178, pp. 257-262, (1999).

 

[2] He, J.H., "A Coupling Method of Homotopy Technique and Perturbation Technique for Nonlinear Problems", International Journal of Nonlinear Mechanics, Vol. 35, pp. 37-43, (1999).

 

 [3] He, J.H., "A Variational Iteration Method to Duffing Equation (in Chinese)", Chinese Journal of Computational Physics, Vol. 16, pp. 121-133, (1999).

 

[4] He, J.H., "An Elementary Introduction to the Homotopy Perturbation Method", Computers and Mathematics with Applications, Vol. 57, pp. 410-412, (2009).

 

[5] Nayfeh, A.H., and Mook, D.T., "Nonlinear Oscillations", Wiley Interscience, New York, (1979).

 

[6] Nayfeh, A.H., "Introduction to Perturbation Techniques", Wiley Interscience, New York, (1981).

 

[7] Liao, S.J., and Chwang, A.T., "Application of Homotopy Analysis Method in Nonlinear Oscillations", ASME Journal of Applied Mechanics, Vol. 65, pp. 914-922, (1998).

 

[8] He, J.H., "New Interpretation of Homotopy Perturbation Method", International Journal of Modern Physics B, Vol. 20, pp. 2561-2568, (2006).

 

[9] He, J.H., "Homotopy Perturbation Method with an Auxiliary Term", Abstract and Applied Analysis, Vol. 2012, pp. 1-7, (2012).

 

[10] He, J.H., "Comment on He’s Frequency Formulation for Nonlinear Oscillators", European Journal of Physics, Vol. 29, pp. 19-22, (2008).

 

[11] He, J.H., "Preliminary Rreport on the Energy Balance for Nonlinear Oscillations", Mechanics Research Communications, Vol. 29, pp. 107-111, (2002).

[12] Ganji, D.D., Gorji, M., Soleimani, S., and Esmaeilpour, M., "Solution of Nonlinear Cubic-quantic Duffing Oscillators using He’s Energy Balance Method", Journal of Zhejiang University: Science A, Vol. 10, pp. 1263-1268, (2009).

 

[13] Mickens, R.E., "Mathematical and Numerical Study of the Duffing-harmonic Oscillator", Journal of Sound and Vibration, Vol. 244, pp. 563-567, (2001).

 

[14] Yazdi, M.K., Mirzabeigy, A., and Abdollahi, H., "Nonlinear Oscillators with Non-polynomial and Discontinuous Elastic Restoring Forces", Nonlinear Science Letters A, Vol. 3, pp. 48-53, (2012).

 

[15] He, J.H., "Max-min Approach to Nonlinear Oscillators", International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 9, pp. 207-210, (2008).

 

[16] Yazdi, M.K., Ahmadian, H., Mirzabeigy, A., and Yildirim, A., "Dynamic Analysis of Vibrating Systems with Nonlinearities", Communications in Theoretical Physics, Vol. 57, pp. 183-187, (2012).

 

[17] He, J.H., "Some Asymptotic Methods for Strongly Nonlinear Equations", International Journal of Modern Physics B, Vol. 20, pp. 1141-1199, (2006).

 

[18] Noor, M.A., and Khan, W.A., "New Iterative Methods for Solving Nonlinear Equation by using Homotopy Perturbation Method", Applied Mathematics and Computation, Vol. 219, pp. 3565-3574, (2012).

 

 [19] Momani, S., Erjaee, G.H., and Alnasr, M.H., "The Modified Homotopy Perturbation Method for Solving Strongly Nonlinear Oscillators", Computers and Mathematics with Applications, Vol. 58, pp. 2209-2220, (2009).

 

[20] Hu, M., and Wang, L., "Periodic Solutions for Some Strongly Nonlinear Oscillators by He’s Energy Balance Method", World Academy of Science Engineering and Technology, Vol. 68, pp. 620-622, (2012).

 

[21] Ramezani, A., Alasty, A., and Akbari, J., "Effects of Rotary Inertia and Shear Deformation on Nonlinear Free Vibration of Microbeams", ASME Journal of Vibration and Acoustics, Vol. 128, pp. 611-615, (2006).

 

[22] Pirbodaghi, T., Ahmadian, M.T., and Fesanghary, M., "On the Homotopy Analysis Method for Nonlinear Vibration of Beams", Mechanics Research Communications, Vol. 36, pp. 143-148, (2009).

 

[23] Sedighi, H.M., Shirazi, K.H., and Zare, J., "An Analytic Solution of Transversal Oscillation of Quantic Nonlinear Beam with Homotopy Analysis Method", International Journal of Nonlinear Mechanics, Vol. 47, pp. 777-784, (2012).

 

[24] Sarma, B.S., Vardan, T.K., and Parathap, H., "On Various Formulation of Large Amplitude Free Vibration of Beams", Journal of Computers and Structures Vol. 29, pp. 959-966, (1988).

 

[25] Poorjamshidan, M., Sheikhi, J., Mahjoobmoghadas, S., and Norouzinia, M., "An Analytic Solution of Transversal Vibrations and Frequency Response of Quantic Nonlinear Beam", Modares Mechanical Engineering, Vol. 13, pp. 1-9, (2014).

 

[26] Wang, L., Ni, Q., Li, M., and Qian, Q., "The Thermal Efect on Vibration and Instability of Carbon Nanotubes Conveying Fluid", Physica E, Vol. 40, pp. 3179-3182, (2008).