بررسی تجربی و عددی عملکرد ورق های فولادی ساده و تقویت شده با لچکی تحت ضربه سقوط آزاد

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه عمران سازه، دانشکده فنی و مهندسی، دانشگاه لرستان، خرم آباد، ایران

2 دانشیار، گروه عمران سازه، دانشکده فنی و مهندسی، دانشگاه لرستان، خرم آباد، ایران

3 نویسنده مسئول، دانشیار، گروه مکانیک، دانشکده فنی و مهندسی، دانشگاه لرستان، خرم آباد، ایران

چکیده

در این تحقیق، به بررسی آزمایشگاهی و عددی ورق‌های فولادی تخت و تقویت شده بوسیله تقویت‌کننده-های فولادی، تحت اثر ضربه ناشی از سقوط آزاد وزنه پرداخته شده است. ورق‌های فولادی مورد استفاده از جنس فولاد St12 می‌باشند. پارامترهای مورد ارزیابی این پژوهش شامل مقدار شتاب ضربه بر روی ورق، میزان تغییرشکل ماندگار و مقدار جذب انرژی برای ورق‌های تخت ساده و با تقویت‌کننده می‌باشد. برای مدل‌سازی عددی از نرم‌افزار المان محدود آباکوس استفاده شده است. نتایج نشان می‌دهد که استفاده از تقویت‌کننده موجب اندکی افزایش در شتاب وارده به ورق و کاهش قابل توجه تغییرشکل ماندگار آن می گردد.

کلیدواژه‌ها

موضوعات


[1] Merzhievskii, L. A., and Titov, V. M., "Perforation of Plates Through High Velocity
Impact", Journal of Applied Mechanics and Technical Physics, Vol. 16, pp. 757 (1975).
[2] O’Toolea, B., Trabiaa, M., Hixsonb, R., Roya, S. K., Penab, M., Beckerb, S., Daykinb, E.,
Machorrob, E., Jenningsa, R., and Matthes, M., "Modeling Plastic Deformation of Steel
Plates in Hypervelocity Impact Experiments", Journal of Procedia Engineering, Vol. 103,
pp. 458-465 (2015).
[3] Kumar, P., LeBlanc, J., Stargel, D., and Shukla, A., "Effect of Plate Curvature on Blast
Response of Aluminum Panels", International Journal of Impact Engineering, Vol. 46,
No. 29, pp.74-85 (2012).
[4] McShane, G. J., Stewart, C., Aronson, M.T., Wadley, H. N. G., Fleck, N. A., and
Deshpande, V. S., "Dynamic Rupture of Polymer-Metal Bilayer Plates", International
Journal of Solids and Structures, Vol. 45, No. 16, pp. 4407-4426 (2008).
[5] Kitada T., "Ultimate Strength and Ductility of Concrete-filled Steel Bridge Piers",
Engineering Structures, Vol. 20, No. 4, pp. 347-354, (1998).
[6] Saghafi, H., Minak, G., and Zucchelli, A., "Effect of Preload on the Impact Response of
Curved Composite Panels", Composites: Part B, Vol. 60, pp. 74-81, (2014).
[7] Khedmati, K., and Nazari, M., "A Numerical Investigation into Strength and Deformation
Characteristics of Preloaded Tubular Members under Lateral Impact Loads", Marine
Structures, Vol. 25, pp. 33-57, (2012).
[8] Ustaa, F., Mullaoglu, F., Türkmen, H. S., Balkan, D., Mecitoglu, Z., Kurtaran, H., and
Akay, E., "Effects of Thickness and Curvature on Impact Behaviour of Composite
Panels", Journal of Procedia Engineering, Vol. 167, pp. 216-222, (2016).
[9] Bidi, A., Liaghat, Gh., and Rahimi, Gh., "Experimental and Numerical Analysis of Impact
on Steel Curved Panels", Modares Mechanical Engineering, Vol. 16, No. 4, pp. 281-288,
(2016). (In Persian).
[10] Choubini, M., Liaghat, Gh. H., and Hossein, Pol M., "Investigation of Energy Absorption
and Deformation of Thin Walled Tubes with Circle and Square Section Geometries
under Transverse Impact Loading", Modares Mechanical Engineering, Vol. 15, No. 1,
pp. 75-83 (2015). (In Persian).
[11] Bidi, A., Liaghat, A., and Rahimi, Gh., "Experimental and Numerical Analysis of Impact
on Curved Steel-polyurea Bi-layer Panels", Journal of Science and Technology of
Composites, Vol. 3, No. 3, pp. 207-214, (2016). (In Persian).
[12] Corbett, G. G., Reid, S. R., and Johnson, W., "Impact Loading of Plates and Shells by
Free-Flying Projectiles: A Review", Int. J. ImpactEngno, Vol. 18, No. 2, pp. 141-230
(1995).
[13] Bidi, A., Liaghat, Gh., and Rahimi, Gh., "Effect of Nano Clay Addition to Energy
Absorption Capacity of Steel-polyurea Bi-layer", Journal of Science and Technology of
Composites, Vol. 3, No. 2, pp. 157-164, (2016).
[14] Khedmati, M.R., and Nazari, M., "A Numerical Investigation into Strength and
Deformation Characteristics of Preloaded Tubular Members under Lateral Impact
Loads", Marine Structures, Vol. 25, pp. 33-57, (2012).
[15] Hatami, H., and Ghodsbin Jahromi, A., "Energy Absorption Performance on Multilayer
Expanded Metal Tubes under Axial Impact", Thin-walled Structures, Vol. 116, pp. 1-11
(2017).
[16] Nouri, M.D., Hatami, H., and Jahromi, A.G., "Experimental and Numerical Investigation
of Expanded Metal Tube Absorber under Axial Impact Loading", Structural Engineering
and Mechanics, Vol. 54, No. 6, pp. 1245-1266, (2015).
[17] Hatami, H., and Nouri, M.D., "Experimental and Numerical Investigation of Latticewalled
Cylindrical Shell under Low Axial Impact Velocities", Latin American Journal of
Solids and Structures, Vol. 12, No. 10, pp. 1950-1971, (2015).
[18] Hatami, H., Shokri Rad, M., and Ghodsbin Jahromi A., "A Theoretical Analysis of the
Energy Aabsorption Response of Expanded Metal Tubes under Impact Loads",
International Journal of Impact Engineering, Vol. 109, pp. 224-239, (2017).
[19] Nouri M.D., and Hatami, H., "Experimental and Numerical Study of the Effect of
Longitudinal Reinforcements on Cylindrical and Conical Absorbers uunder Impact
Loading", Indian Journal of Science and Technology, Vol. 7, No. 2, pp. 199-210, (2014).
[20] Damghani Noori, M., Hatami, H., and Ghodsbin Jahromi, A., "Expanded Metal Tube
Absorbers under Axial Impact Loading", Modares Mechanical Engineering, Vol. 15, No.
1, pp. 371-378, (2015).
[21] Hatami, H., Hosseini, M., and Yasuri, A.K., "Perforation of Thin Aluminum Targets
under Hypervelocity Impact of Aluminum Spherical Projectiles", Materials Evaluation,
Vol. 77, No. 3, pp. 411-422, (2019).
[22] Rad, M.S., Hatami, H., Alipouri, R., Nejad, A.F., and Omidinasab, F., "Determination of
Energy Absorption in Different Cellular Auxetic Structures", Mechanics & Industry,
Vol. 20, No. 3, pp. 302, (2019).
[23] Rad, M.S., Hatami, H., Ahmad, Z., and Yasuri, A.K., "Analytical Solution and Finite
Element Approach to the Dense Re-entrant Unit Cells of Auxetic Structures", Acta
Mechanica, Vol. 230, pp. 1-15, (2-19).
[24] Ghodsbin Jahromi, A., and Hatami, H., "Numerical Behavior Study of Expanded Metal
Tube Absorbers and Effect of Cross Section Size and Multi-layer under Low Axial
Velocity Impact Loading", Amirkabir Journal of Mechanical Engineering, Vol. 49, No.
4, pp. 685-696, (2018).
[25] Hatami, H., and Fatholahi, A.B., "The Theoretical and Numerical Comparison and
Investigation of the Effect of Inertia on the Absorbent Collapse Behavior of Single Cell
and Two-cell Reticular under Impact Loading", Amirkabir Journal of Mechanical
Engineering, Vol. 50, No. 5, pp. 51-60, (2017).
[26] ASTM E8/E8M-09, Standard Test Methods for Tension Testing of Metallic Materials.
[27] ABAQUS/CAE 6.12, ABAQUS Analysis User,s Manual Version 6.10, (2016).