بررسی عددی پارامترهای موثر بر انتقال حرارت جابجایی طبیعی در حفره مربعی متخلخل با مانع استوانه‌ای داخلی با استفاده از روش شبکه بولتزمن

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 کارشناسی ارشد مهندسی مکانیک، گروه مکانیک، دانشکده فنی و مهندسی، دانشگاه هرمزگان، بندرعباس

2 استادیار مهندسی مکانیک، گروه مکانیک، دانشکده فنی و مهندسی، دانشگاه هرمزگان، بندرعباس

چکیده

در این مقاله انتقال حرارت جابجایی طبیعی درون محیط متخلخل در مقیاس REV، با استفاده از روش شبکه بولتزمن و به کمک مدل عمومی اصلاح شده برینکمن- فورچیمر با صرف نظر کردن از ترم‌های تلفات ویسکوز و کار ناشی از تراکم شبیه‌سازی شده ‌است. تاثیر نسبت شعاع به طول (1/0، 2/0 و 3/0)، رایلی (103، 104، 105 و 106)، دارسی (1-10، 3-10 و 5-10) و ضریب تخلخل (3/0، 6/0 و 9/0) بر مسئله انتقال حرارت جابجایی در حفره متخلخل با سیلندر داخلی نیز بررسی شده است. در اعداد رایلی، دارسی و نسبت ابعاد ثابت با افزایش ضریب تخلخل از 3/0به 6/0 عدد ناسلت میانگین از 33/4 به 40/5 افزایش می‌یابد. به این معنی که با افزایش سطح تماس (ضریب تخلخل) انتقال حرارت بهبود و متعاقبا عدد ناسلت میانگین افزایش می‌یابد.

کلیدواژه‌ها

موضوعات


[1] Nazari, M., "Analytical and Numerical Calculation of Flow Permeability in a Porous
Medium with Square Cross Section", Modares Mechanical Engineering, Vol. 12, No. 1, pp.
21-32, (2012).
[2] Heijs, A.W., and Lowe, C.P., "Numerical Evaluation of the Permeability and the Kozeny
Constant for Two Types of Porous Media", Physical Review E, Vol. 51, No. 5, pp. 4346-
4352, (1995).
[3] Zhang, Y., Qin, R., and Emerson, D.R., "Lattice Boltzmann Simulation of Rarefied Gas
Flows in Microchannels", Physical Review E, Vol. 71, 047702, (2005).
[4] Neumann, P., and Rohrmann, T., "Lattice Boltzmann Simulations in the Slip and Transition
Flow Regime with the Peano Framework", Open Journal of Fluid Dynamics, Vol. 2, pp.
101-110, (2012).
[5] Frisch, U., Hasslacher, B., and Pomeau, Y., "Lattice-gas Automata for the Navier-Stokes
Equation", Physical Review Letters, Vol. 56, No. 14, pp.1505-1508, (1986).
[6] Harris, S., "An Introduction to the Theory of Boltzmann Equation", Holt, Rinehart and
Winston", New York, USA, (1971).
[7] Succi, S., Foti, E., and Higuera, F., "Three-dimensional Flows in Complex Geometries with
the Lattice Boltzmann Method", EPL (Europhysics Letters), Vol. 10, No. 5, pp. 433-438,
(1989).
[8] Ferreol, B., and Rothman, D.H., "Lattice-Boltzmann Simulations of Flow through
Fontainebleau Sandstone", Multiphase Flow in Porous Media", Vol. 20, pp. 3-20, (1995).
[9] Maier, R.S., Kroll, D.M., Kutsovsky, Y.E., Davis, H.T., and Bernard, R.S., "Simulation of
Flow through Bead Packs using the Lattice Boltzmann Method", Physics of Fluids, Vol. 10,
No. 1, pp. 60-74, (1998).
[10] Cancelliere, A., Chang, C., Foti, E., Rothman, D.H., and Succi, S., "The Permeability of a
Random Medium: Comparison of Simulation with Theory", Physics of Fluids A: Fluid
Dynamics, Vol. 2, No. 12, pp. 2085-2088, (1990).
[11] Zhang, D., Zhang, R., Chen, S., and Soll, W.E., "Pore Scale Study of Flow in Porous
Media: Scale Dependency, REV, and Statistical REV", Geophysical Research Letters,
Vol. 27, No. 8, pp. 1195-1198, (2000).
[12] Pan, C., Hilpert, M., and Miller, C.T., "Pore-scale Modeling of Saturated Permeabilities in
Random Sphere Packings", Physical Review E, Vol. 64, No. 6, 066702, (2001).
[13] Yoshino, M., and Mizutani, Y., "Lattice Boltzmann Simulation of Liquid-gas Flows
through Solid Bodies in a Square Duct", Mathematics and Computers in Simulation, Vol.
72, pp. 264-269, (2006).
[14] Nabovati, A., and Sousa, A.C.M., "Fluid Flow Simulation in Random Porous Media at
Pore Level using Lattice Boltzmann Method", in New Trends in Fluid Mechanics
Research, Proceedings of the Fifth International Conference on Fluid Mechanics,
Shanghai, China, 15-19 Aug. (2007).
[15] Nabovati, A., "Pore Level Simulation of Single and Two Phase Flow in Porous Media
using Lattice Boltzmann Method", PhD thesis, Department of Mechanical Engineering,
University of New Brunswick, Fredericton and Saint John, New Brunswick, Canada,
(2009).
[16] Dardis, O., and McCloskey, J., "Lattice Boltzmann Scheme with Real Numbered Solid
Density for the Simulation of Flow in Porous Media", Physical Review E, Vol. 57, No. 4,
pp. 4834-4837, (1998).
[17] Spaid, M.A., and Phelan Jr, F.R., "Lattice Boltzmann Methods for Modeling Microscale
Flow in Fibrous Porous Media", Physics of Fluids, Vol. 9, No. 9, pp. 2468-2474, (1997).
[18] Freed, D.M., "Lattice Boltzmann Method for Macroscopic Porous Media
Modeling", International Journal of Modern Physics C, Vol. 9, No. 8, pp. 1491-1503,
(1998).
[19] Martys, N.S., "Diffusion in Partially-saturated Porous Materials", Materials and
Structures", Vol. 32, No. 8, pp. 555-562, (1999).
[20] Jue, T.C., "Numerical Analysis of Vortex Shedding Behind a Porous Square
Cylinder", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 14,
No. 5, pp. 649-663, (2004).
[21] Seta, Takeshi, Eishun Takegoshi, and Kenichi Okui. "Lattice Boltzmann Simulation of
Natural Convection in Porous Media", Mathematics and Computers in Simulation,
Vol. 72, No. 2-6, pp. 195-200, (2006).
[22] Vafai, K., and Tien, C.L., "Boundary and Inertia Effects on Flow and Heat Transfer in
Porous Media", International Journal of Heat and Mass Transfer, Vol. 24, No. 2, pp. 195-
203, (1981).
[23] Vafai, K., and Kim, S.J., "Forced Convection in a Channel Filled with a Porous Medium:
an Exact Solution", Journal of Heat Transfer (Transactions of the ASME, Series C),
USA, Vol. 111, No. 4, (1989).
[24] Poulikakos, D., and Kazmierczak, M., "Forced Convection in a Duct Partially Filled with
a Porous Material", Journal of Heat Transfer, Vol. 109, No. 3, pp. 653-662, (1987).
[25] Kuznetsov, A.V., "Fluid Mechanics and Heat Transfer in the Interface Region between a
Porous Medium and a Fluid Layer: a Boundary Layer Solution", Journal of Porous
Media, Vol. 2, No. 3, pp. 309-321, (1999).
[26] Vafai, K., "Handbook of Porous Media", Marcel Dekker, CRC Press, New York, USA,
(2000).
[27] Alkam, M.K., and Al-Nimr, M.A., "Transient Non-Darcian Forced Convection Flow in a
Pipe Partially Filled with a Porous Material", International Journal of Heat and Mass
Transfer, Vol. 41, No. 2, pp. 347-356, (1998).
[28] Ashorynejad, H.A., Farhadi, M., Sedighi, K., and Hasanpour, A., "Free Convection in a
MHD Porous Cavity with using Lattice Boltzmann Method", World Academy of Science,
Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial,
Mechatronic and Manufacturing Engineering, Vol. 5, No. 1, pp. 130-135, (2011).
[29] Mehrizi, A.A., Sedighi, K., Afrouzi, H.H., and Aghili, A.L., "Lattice Boltzmann
Simulation of Forced Convection in Vented Cavity Filled By Porous Medium with
Obstruction", World Applied Sciences Journal, Vol. 16, pp. 31-36, (2012).
[30] Sidik, N.A., Samion, S., "Numerical Solution to Thermal Fluid Flow Through Porous
Media using Lattice Boltzmann Method", International Review of Mechanical
Engineering (IREME), Vol. 7, No. 6, (2013).
[31] Zarghami, A., Francesco, S.D. and Biscarini, C., "Porous Substrate Effects on Thermal
Flows Through a Rev-scale Finite Volume Lattice Boltzmann Model", International
Journal of Modern Physics C, Vol. 25, No. 2, 1350086 (21 pages), (2014).
[32] Al-Nimr, M.A., and Alkam, M.K., "Unsteady Non-Darcian Forced Convection Analysis
in an Annulus Partially Filled with a Porous Material", Journal of Heat Transfer, Vol. 119,
No. 4, pp. 799-804, (1997).
[33] Mohamad, A.A., "Heat Transfer Enhancements in Heat Exchangers Fitted with Porous
Media Part I: Constant Wall Temperature", International Journal of Thermal Sciences,
Vol. 42, No. 4, pp. 385-395, (2003).
[34] Fu, H.L., Leong, K.C., Huang, X.Y., and Liu, C.Y., "An Experimental Study of Heat
Transfer of a Porous Channel Subjected to Oscillating Flow", Journal of Heat Transfer,
Vol. 123, No. 1, pp. 162-170, (2001).
[35] Shuja, S.Z., Yilbas, B.S., and Kassas, M., "Flow over Porous Blocks in a Square Cavity:
Influence of Heat Flux and Porosity on Heat Transfer Rates", International Journal of
Thermal Sciences, Vol. 48, No. 8, pp. 1564-1573, (2009).
[36] Layeghi, M., and Nouri-Borujerdi, A., "Fluid Flow and Heat Transfer around Circular
Cylinders in the Presence and No-presence of Porous Media", Journal of Porous Media,
Vol. 7, No. 3, (2004).
[37] Yuan, P.,"Thermal Lattice Boltzmann Two-Phase Flow Model for Fluid Dynamics",
Doctoral Dissertation, University of Pittsburgh, Pennsylvania, USA, (2006)
[38] Succi, S., "The Lattice Boltzmann Equation: for Fluid Dynamics and Beyond", Clarendon
Press, Oxford, UK, (2001).
[39] Mohamad, A.A.,"Lattice Boltzmann Method: Fundamentals and Engineering Applications
with Computer Codes", Springer Science & Business Media, Berlin, Germany (2011).
[40] Guo, Z., and Zhao, T.S., "Lattice Boltzmann Model for Incompressible Flows through
Porous Media", Physical Review E, Vol. 66, No. 3, 036304 (9 pages), (2002).
[41] Seta, T., Takegoshi, E., Kitano, K., and Okui, K., "Thermal Lattice Boltzmann Model for
Incompressible Flows through Porous Media", Journal of Thermal Science and
Technology, Vol. 1, No. 2, pp. 90-100, (2006).
[42] Sterling, J.D., and Chen, S., "Stability Analysis of Lattice Boltzmann Methods", Journal
of Computational Physics, Vol. 123, No. 1, pp. 196-206, (1996).
[43] Khazaeli, R., Mortazavi, S., and Ashrafizadeh, M., "Application of a Ghost Fluid Approach
for a Thermal Lattice Boltzmann Method", Journal of Computational Physics, Vol. 250,
pp. 126-140, (2013).
[44] Zou, Q., and He, X., "On Pressure and Velocity Boundary Conditions for the Lattice
Boltzmann BGK Model", Physics of Fluids, Vol. 9, No. 6, pp. 1591-1598, (1997).
[45] Ziegler, D.P., "Boundary Conditions for Lattice Boltzmann Simulations", Journal of
Statistical Physics, Vol. 71, No. 5-6, pp. 1171-1177, (1993).
[46] Ginzbourg, I., and Adler, P.M., "Boundary Flow Condition Analysis for the Threedimensional
Lattice Boltzmann Model", Journal de Physique II, Vol. 4, No. 2, pp. 191-
214, (1994).
[47] Ladd, A.J., "Numerical Simulations of Particulate Suspensions via a Discretized
Boltzmann Equation Part 2. Numerical Results", Journal of Fluid Mechanics, Vol. 271,
pp. 311-339, (1994).
[48] Noble, D.R., Chen, S., Georgiadis, J.G., and Buckius, R.O., "A Consistent Hydrodynamic
Boundary Condition for the Lattice Boltzmann Method", Physics of Fluids, Vol. 7, No. 1,
pp. 203-209, (1995).
[49] Behrend, O., "Solid-fluid Boundaries in Particle Suspension Simulations via the Lattice
Boltzmann Method", Physical Review E, Vol. 52, No. 1, pp. 1164-1175, (1995).
[50] Inamuro, T., Yoshino, M., and Ogino, F., "A Non‐slip Boundary Condition for Lattice
Boltzmann Simulations", Physics of Fluids, Vol. 7, No. 12, pp. 2928-2930, (1995).
[51] Filippova, O., and Hänel, D., "Grid Refinement for Lattice-BGK Models", Journal of
Computational physics, Vol. 147, No. 1, pp. 219-228, (1998).
[52] Mei, R., Yu, D., Shyy, W., and Luo, L.S., "Force Evaluation in the Lattice Boltzmann
Method Involving Curved Geometry", Physical Review E, Vol. 65, No. 4, 041203 (14
pages), (2002).
[53] de Vahl Davis, G., "Natural Convection of Air in a Square Cavity: a Bench Mark
Numerical Solution", International Journal for Numerical Methods in Fluids, Vol. 3, No.
3, pp. 249-264, (1983).
[54] Guo, Z., Zheng, C., and Shi, B., "An Extrapolation Method for Boundary Conditions in
Lattice Boltzmann Method", Physics of Fluids, Vol. 14, No. 6, pp. 2007-2010, (2002).
[55] Kim, B.S., Lee, D.S., Ha, M.Y., and Yoon, H.S., "A Numerical Study of Natural
Convection in a Square Enclosure with a Circular Cylinder at Different Vertical
Locations", International Journal of Heat and Mass Transfer, Vol. 51, No. 7-8, pp. 1888-
1906, (2008).
[56] Moukalled, F., and Acharya, S., "Natural Convection in the Annulus between Concentric
Horizontal Circular and Square Cylinders", Journal of Thermophysics and Heat Transfer,
Vol. 10, No. 3, pp. 524-531, (1996).