اثر انتقال فاز بر ارتعاشات آزاد و اجباری محرکهای حافظ شکل با مدلسازی تیر تیموشنکو

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 نویسنده مسئول، استادیار، دانشکده فنی و مهندسی، دانشگاه شهرکرد، شهرکرد

2 دانشجوی کارشناسی ارشد، مهندسی مکانیک-طراحی کاربردی، دانشگاه شهرکرد، شهرکرد

چکیده

در این مقاله، ارتعاشات آزاد و اجباری محرک های از جنس آلیاژهای حافظ شکل با در نظر گرفتن اثرات انتقال فاز و اشباع توسط مدل تیر تیموشنکو با شرایط مرزی یکسر گیردار بررسی شده است. پس از استخراج معادلات حرکت از اصل همیلتون، روش مربعات دیفرانسیلی تعمیم یافته برای گسسته سازی معادلات بکار رفته و به دلیل غیر خطی بودن از الگوریتم نگاشت بازگشتی، روش نیوتن رافسون و روش نیومارک حل زمانی آنها بدست آمده است. نتایج نشان می دهند به دلیل تشکیل حلقه های هیسترزیس ارتعاشات میرا شده و در بسیاری از حالات به ناحیه الاستیک در فاز آستنیت محدود می شوند.

کلیدواژه‌ها

موضوعات


[1] Furuya, Y., and Shimada, H., "Shape Memory Actuators for Robotic Applications", Materials and Design, Vol. 12, pp. 21-28, (1991).
[2] Nohouji, H.S., Hamedi, M., and Salehi, M., "Modeling, Validation, and Testing of a Ti-49.8% Ni Shape Memory Actuator", Journal of Intelligent Material Systems and Structures, Vol. 26, pp. 2196-2204, (2015).
[3] Savi, M.A., De Paula, A.S., and Lagoudas, D.C., "Numerical Investigation of an Adaptive Vibration Absorber using Shape Memory Alloys", Journal of Intelligent Material Systems and Structures, Vol. 22, pp. 67-80, (2011).
[4] Kahn, H., Huff, M. A., and Heuer, A. H., "The TiNi Shape-memory Alloy and its Applications for MEMS", Journal of Micromechanics and Microengineering, Vol. 8, pp. 213–221, (1998).
[5] Es-Souni, M., Es-Souni, M., and Fischer-Brandies, H., "Assessing the Biocompatibility of NiTi Shape Memory Alloys used for Medical Applications", Analytical and Bioanalytical Chemistry, Vol. 381, pp. 557-567, (2005).
[6] Yang, K., and Gu, C. L., "Design, Drive and Control of a Novel SMA-actuated Humanoid Flexible Gripper", Journal of Mechanical Science and Technology, Vol. 22, pp. 895-904, (2008).
[7] Yang, S., and Xu, Q., "A Review on Actuation and Sensing Techniques for MEMS-based Microgrippers", Journal of Micro-Bio Robotics, Vol. 13, pp. 1-14, (2017).
[8] Mineta, T., Deguchi, T., Makino, E., Kawashima, T., and Shibata, T., "Fabrication of Cylindrical Micro Actuator by Etching of TiNiCu Shape Memory Alloy Tube", Sensors and Actuators A: Physical, Vol. 165, pp. 392-398, (2011).
[9] Sun, H., Luo, J., Ren, Z., Lu, M., Nykypanchuk, D., Mangla, S., and Shi, Y., "Shape Memory Alloy Bimorph Microactuators by Lift-off Process", ASME Journal of Micro and Nano-Manufacturing, Vol. 8, pp. 031003-1, (2020).
[10] Knick, C. R., Sharar, D. J., Wilson, A. A., Smith, G. L., Morris, C. J., and Bruck, H. A., "High Frequency, Low Power, Electrically Actuated Shape Memory Alloy (SMA) MEMS Bimorph Thermal Actuators", Journal of Micromechanics and Microengineering, Vol. 29, pp. 075005, (2019).
[11] De Souza, C. V., and De Marqui, C., "Airfoil-based Piezoelectric Energy Harvesting by Exploiting the Pseudoelastic Hysteresis of Shape Memory Alloy Springs", Smart Materials and Structures, Vol. 24, pp. 125014 ,(2015).
[12] Kohl, M., Just, E., Pfleging, W., and Miyazaki, S., "SMA Microgripper with Integrated Antagonism", Sensors and Actuators A: Physical, Vol. 83, pp. 208-213, (2000).
[13] Tan, J.P., Huang, W.M., Gao, X.Y., Yeo, J.H., and Miao, J.M., "NiTi Shape Memory Alloy Thin Film based Microgripper", Proceedings of SPIE, April 6, Melbourne, Australia, pp. 106-113, (2001).
[14] Roch, I., Bidaud, P., Collard, D., and Buchaillot, L., "Fabrication and Characterization of an SU-8 Gripper Actuated by a Shape Memory Alloy Thin Film", Journal of Micromechanics and Microengineering, Vol. 13, pp. 330-336, (2003).
[15] Kim, D.H., Lee, M.G., Kim, B., and Sun, Y., "A Superelastic Alloy Microgripper with Embedded Electromagnetic Actuators and Piezoelectric Force Sensors: a Numerical and Experimental Study", Smart Materials and Structures, Vol. 14, pp. 1256, (2005).
[16] Mohamed Ali, M.S., and Takahata, K., "Frequency-controlled Wireless Shape-memory-alloy Microactuators Integrated using an Electroplating Bonding Process", Sensors and Actuators A: Physical, Vol. 163, pp. 363-372, (2010).
[17] Avirovik, D., Kumar, A., Bodnar, R. J., and Priya, S., "Remote Light Energy Harvesting and Actuation using Shape Memory Alloy-Piezoelectric Hybrid Transducer", Smart Materials and Structures, Vol. 22, pp. 052001, (2013).
[18] Adeodato, A., Duarte, B.T., Monteiro, L L. S., Pacheco, P M C.L., and Savi, M.A., "Synergistic use of Piezoelectric and Shape Memory Alloy Elements for Vibration Based Energy Harvesting", International Journal of Mechanical Sciences, Vol. 194, pp. 106206, (2020).
[19] Razavilar, R., Fathi, A., Dardel, M., and Arghavani, J., "Dynamic Analysis of a Shape Memory Alloy Beam with Pseudoelastic Behavior", Journal of Intelligent Material Systems and Structures, Vol. 29, pp. 1-15, (2018).
[20] Mirzaeifar, R., DesRoches, R., Yavari. A, and Gall, K., "On Superelastic Bending of Shape Memory Alloy Beams", International Journal of Solids and Structures, Vol. 50, pp. 1664–1680, (2013).
[21] Damanpack, A., Bodaghi, M., Aghdam, M., and Shakeri, M., "Shape Control of Shape Memory Alloy Composite Beams in the Post-buckling Regime", Aerospace Science and Technology, Vol. 39, pp. 575–587, (2014).
[22] Heidari, F., Taheri, K., Sheybani, M., and Janghorban, M., "On the Mechanics of Nanocomposites Reinforced by Wavy/Defected/Aggregated Nanotubes", Steel and Composite Structures, Vol. 38, pp. 533–545, (2021).
[23] Heidari, F., Afsari, A., and Janghorban, M., "Several Models for Bending and Buckling Behaviors of FG-CNTRCs with Piezoelectric Layers Including Size Effects", Advances in Nano Research, Vol. 9, pp. 193–210, (2020).
[24] Souza, A.C., Mamiya, E.N., and Zouain, N., "Three-dimensional Model for Solids Undergoing Stress-induced Phase Transformations", European Journal of Mechanics: A/Solids, Vol. 17, pp. 789–806, (1998).
[25] Lambrecht, F., Lay, C., Aseguinolaza, I.R., Chernenko, V., and Kohl, M., "NiMnGa/Si Shape Memory Bimorph Nanoactuation", Shape Memory and Superelasticity, Vol. 2, pp. 347–359, (2016).
[26] Ashrafi, M.J., Arghavani, J., Naghdabadi, R., Sohrabpour, S., and Auricchio, F., "Theoretical and Numerical Modeling of Dense and Porous Shape Memory Alloys Accounting for Coupling Effects of Plasticity and Transformation", International Journal of Solids and Structures, Vol. 88-89, pp. 248-262, (2016).
[27] Reddy, J.N., "Microstructure-dependent Couple Stress Theories of Functionally Graded Beams", Journal of the Mechanics and Physics of Solids, Vol. 59, pp. 2382–2399, (2011).
[28] Tajalli, S.A., "A Micro Plasticity Model for Pure Bending Analysis of Curved Beam-like MEMS Devices", Mechanics of Materials, Vol. 151, pp. 103606, (2020).
[29] Tomasiello, S., "Differential Quadrature Method: Application to Initial-boundary-value Problems", Journal of Sound and Vibration, Vol. 218, pp. 385-414, (1998).
[30] Janghorban, M., "Two Different Types of Differential Quadrature Methods for Static Analysis of Microbeams Based on Nonlocal Thermal Elasticity Theory in Thermal Environment", Archive of Applied Mechanics, Vol. 82, pp. 669-675, (2012).
[31] Bahrami, K., Afsari, A., Janghorban, M., and Karami, B., "Static Analysis of Monoclinic Plates via a Three-dimensional Model using Differential Quadrature Method", Structural Engineering and Mechanics, Vol. 72, pp. 131–139, (2019).
[32] Auricchio, F., and Petrini, L., "Improvements and Algorithmical Considerations on a Recent Three-dimensional Model Describing Stress-induced Solid Phase Transformations", International Journal for Numerical Methods in Engineering, Vol. 55, pp. 1255–1284, (2002).