تحلیل ارتعاشات غیرخطی ورق چندلایه مرکب با استفاده از دو روش تحلیلی تقریبی

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

1 نویسنده مسئول، استادیار، دانشکده مهندسی مکانیک و هوافضا، دانشگاه صنعتی شیراز

2 دانشجوی دکترای مکانیک، دانشکده مهندسی مکانیک و هوافضا، دانشگاه صنعتی شیرا

3 کارشناسی ارشد، دانشکده مهندسی مکانیک و هوافضا، دانشگاه صنعتی شیراز

چکیده

در این مقاله با استفاده از دو روش تحلیلی تقریبی، به بررسی ارتعاشات آزاد غیرخطی ورق­های چندلایه مرکب پرداخته شده است. با توجه به لزوم بـررسی اثـر پـارامترهای مختلف بـر روی ارتعاشات غیرخطی ورق­های مرکب و یافتن یک حل تحلیلی تقریبی، ابتدا با در نظر گرفتن جملات غیرخطی در روابط کرنش ـ جابجایی ون­کارمن، به مدل­سازی یک ورق مرکب پرداخته شده است؛ سپس معادله دیفرانسیل پاره­ای حاکم بر حرکت غیرخطی استخراج شده و این معادله به یک معادله دیفرانسیل عادی غیرخطی کاهش داده می­شود. از آنجاییکه روش تحلیلی تقریبی هموتوپی یکی از روش­های کارآمد جهت حل معادلات دیفرانسیل غیرخطی می­باشد و دارای دقت بسیار بالایی است و روش دامنه فرکانس هی نیز در عین سادگی، دقت بسیار خوبی را دارد، لذا به منظور دست­یابی به یک جواب تحلیلی تقریبی قابل قبول، از این روش­ها استفاده گردیده است. نتایج نشان می­دهند که این روش­ها، حل­های بسته با دقت بالایی را برای مسائل غیـر خطی ارائه می­نمایند. در پـایـان، اثـر پارامترهای مختلف از جمله نسبت منظری، لایه­چینی­ها و نسبت مدول­ها بر روی نسبت فرکانس غیرخطی به خطی ورق­های ایزوتروپ و مرکب مورد بررسی قرار گرفته است.

کلیدواژه‌ها


[1]    He, J.H., “Homotopy Perturbation Method for Solving Boundary Value Problems”, Physics Letters A, Vol. 350, No. 1-2, pp. 87-88, (2006).

 

[2]    He, J.H., “Variational Iteration Method: Some Recent Results and New Interpretations”, Journal of Computational and Applied Mathematics, Vol. 207, pp. 3-17, (2007).

 

[3]    Liu, H.M., “Approximate Period of Nonlinear Oscillators with Discontinuities by Modified Lindstedt-Poincare Method”, Chaos, Solitons and Fractals, Vol. 23, No. 2, pp. 577–579, (2005).

 

[4]    Beléndez, A., Hernandez, A., Beléndez, T., Álvarez, M.L., Gallego, S., Ortuño, M., and Neipp, C., “Application of the Harmonic Balance Method to a Nonlinear Oscillator Typified by a Mass Attached to a Stretched Wire”, Journal of Sound and Vibration, Vol. 302, No. 4-5, pp. 1018-1029, (2007).

 

[5]    Younesian, D., Askari, H., Saadatnia, Z., and KalamiYazdi, M., “Frequency Analysis of Strongly Nonlinear Generalized Duffing Oscillators using He’s Frequency Amplitude Formulation and He’s Energy Balance Method”, Computers and Mathematics with Applications, Vol. 59, No. 9, pp. 3222-3228, (2010).

 

[6]    Leissa, A.W., “Plate Vibration Research, 1976–1980: Classical Theory”, The Shock and Vibration Digest, Vol. 13, No. 9, pp. 11-22, (1981).

 

[7]    Leissa, A.W., “Plate Vibration Research, 1976–1980: Complicating Factors”, The Shock and Vibration Digest, Vol. 13, No. 10, pp. 19-36, (1981).

 

[8]    Bert, C.W., “Plate Research on Dynamic Behavior of Composite and Sandwich Plates—IV”, The Shock and Vibration Digest, Vol. 17, No. 11, pp. 3-25, (1985).

 

[9]    Sathyamoorthy, M., “Nonlinear Vibrations of Plates: an Update of Recent Research Developments”, Applied Mechanics Reviews, Vol. 49, No. 10S, pp. 55-62, (1996).

 

[10]  Chu, H.N., and Herrmann, G., “Plate Influence of Large Amplitudes on Free Flexural         Vibrations of Rectangular Plates”, ASME J. Appl. Mech. Vol. 23, pp. 532-540, (1956).

 

[11]  Chandrasekharappa, G., and Srirangarajan, H.R., “Nonlinear Free Vibration of Elastic Plates”, AIAA Journal, Vol. 27, No. 5, pp. 665-667, (1989).

 

[12]  Bhimaraddi, A., “Large Amplitude Vibrations of Imperfect Antisymmetric Angle-ply Laminated Plates”, Journal of Sound and Vibration, Vol. 162, No. 3, pp. 457-470, (1993).

 

[13]  Rao, B.N., and Pillai, S.R.R., “Non-linear Vibrations of a Simply Supported Rectangular Antisymmetric Cross-ply Plate with Immovable Edges”, Journal of Sound and Vibration, Vol. 152, No. 3, pp. 568-572, (1992).

[14]  Raju, I.S., Rao, G.V., and Raju, K.K., “Effect of Longitudinal or Inplane Deformation and Inertia on the Large Amplitude Flexural Vibrations of Slender Beams and Thin Plates”, Journal of Sound and Vibration, Vol. 49, No. 3, pp. 415-422, (1976).

 

[15]  Chen, C.S., Fung, C.P., and Chein, R.D., “A Further Study on Nonlinear Vibration of Initially Stressed Plates”, Applied Mathematics and Computation, Vol. 172, No. 1, pp. 349-367, (2006).

 

[16]  Singh, S., Raju, K.K., and Rao, G.V., “Non-linear Vibrations of Simply Supported Rectangular Cross-ply Plates”, Journal of Sound and Vibration, Vol. 142, No. 2, pp. 213-226, (1990).

 

[17]  Sheikh, A.H., and Mukhopadhyay, M., “Large Amplitude Free Flexural Vibration of Stiffened Plates”, AIAA Journal, Vol. 34, No. 11, pp. 2377-2383, (1996).

 

[18]  Sivakumar, K., Iyengar, N.G.R., and Deb, K., “Free Vibration of Laminated Composite Plates with Cutouts”, Journal of Sound and Vibration, Vol. 221, No. 3, pp. 443-470, (1999).

 

[19]  Sundararajana, N., Prakash, T., and Ganapathi, M., “Nonlinear Free Flexural Vibrations of Functionally Graded Rectangular and Skew Plates under Thermal Environments”, Finite Elements in Analysis and Design, Vol. 42, No. 2, pp. 152-168, (2005).

 

[20]  Singha, M.K., and Ganapathi, M., “Large Amplitude Free Flexural Vibrations of Laminated Composite Skew Plates”, International Journal of Non-linear Mechanics, Vol. 39, No. 10, pp. 1709-1720, (2004).

 

[21]  Malekzadeha, P., and Karami, G., “Differential Quadrature Nonlinear Analysis of Skew Composite Plates Based on FSDT”, Engineering Structures, Vol. 28, No. 9, pp. 1307-1318, (2006).

 

[22]  Malekzadeha, P., “A Differential Quadrature Nonlinear Free Vibration Analysis of Laminated Composite Skew Thin Plates”, Thin-Walled Structures, Vol. 45, No. 2, pp. 237-250, (2007).

 

[23]  Lal, A., and Singh, B.N., “Stochastic Nonlinear Free Vibration of Laminated Composite Plates Resting on Elastic Foundation in Thermal Environments”, Computational Mechanics, Vol. 44, No. 1, pp. 15-29, (2008).

 

[24]  Kumar Dash, A., “Large Amplitude Free Vibration Analysis of Composite Plates by Finite Element Method”, Master of Technology in Structural Engineering, Department of Civil Engineering, National Institute of Technology, Rourkela, India, (2010).

 

[25]  Mei, C., “Finite Element Displacement Method for Large Amplitude Free Flexural Vibrations of Beams and Plates”, Computers and Structures, Vol. 3, No. 1, pp. 163-174, (1973).

 

[26]  He, J.H., “Some Asymptotic Methods for Strongly Nonlinear Equations”, International Journal of Modern Physics B, Vol. 20, No. 10, pp. 1141-1199, (2006).

[27]  Zhang, H.L., “He's Amplitude-frequency Formulation to a Nonlinear Oscillator with Discontinuity”, Application, Computers and Mathematics with Applications, Vol. 58, No. 11-12, pp. 2197-2198, (2009).

 

[28]  Fan, J., “He’s Frequency-amplitude Formulation for the Duffing Harmonic Oscillator”, Computers and Mathematics with Application. Vol. 58, No. 11-12, pp. 2473-2476, (2009).

 

[29]  Geng, L., and Cai, X.C., “He's Frequency Formulation for Nonlinear Oscillators”, European Journal of Physics, Vol. 28, No. 5, pp. 923-931, (2007).

 

[30]  He, J.H., “An Improved Amplitude-frequency Formulation for Nonlinear Oscillators”, International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 9, No. 2, pp. 211-212, (2008).

 

[31]  Li, S., and Liao, S.J., “An Analytic Approach to Solve Multiple Solutions of a Strongly Nonlinear Problem”, Applied Mathematics and Computation, Vol. 169, No. 2, pp. 854-865, (2005).

 

[32]     رفیعی­پور حسین، لطف­آور امیر، حمزه­شلمزاری صغری، "تحلیل ارتعاشات غیرخطی تیر هدفمند روی بستر الاستیک وینکلر ـ پسترناک تحت بارهای مکانیکی و حرارتی با استفاده از روش تحلیلی هموتوپی"، مهندسی مکانیک مدرس، 12 (5)، ص87-101، (1391).

 

[33]    Singha, M.K., and Daripa, R., “Nonlinear Vibration of Symmetrically Laminated Composite Skew Plates by Finite Element Method”, International Journal of Non-linear Mechanics, Vol. 42, No. 9, pp. 1144-1152, (2007).