• صفحه اصلی
  • مرور
    • شماره جاری
    • بر اساس شماره‌های نشریه
    • بر اساس نویسندگان
    • بر اساس موضوعات
    • نمایه نویسندگان
    • نمایه کلیدواژه ها
  • اطلاعات نشریه
    • درباره نشریه
    • اهداف و چشم انداز
    • اعضای هیات تحریریه
    • همکاران دفتر نشریه
    • اصول اخلاقی انتشار مقاله
    • بانک ها و نمایه نامه ها
    • پیوندهای مفید
    • پرسش‌های متداول
    • فرایند پذیرش مقالات
    • اخبار و اعلانات
  • راهنمای نویسندگان
  • ارسال مقاله
  • داوران
  • تماس با ما
 
  • ورود به سامانه ▼
    • ورود به سامانه
    • ثبت نام در سامانه
  • English
صفحه اصلی فهرست مقالات مشخصات مقاله
  • ذخیره رکوردها
  • |
  • نسخه قابل چاپ
  • |
  • توصیه به دوستان
  • |
  • ارجاع به این مقاله ارجاع به مقاله
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • اشتراک گذاری اشتراک گذاری
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
نشریه پژوهشی مهندسی مکانیک ایران
مقالات آماده انتشار
شماره جاری
شماره‌های پیشین نشریه
دوره دوره 19 (1396)
دوره دوره 18 (1395)
دوره دوره 17 (1394)
شماره شماره 4
شماره شماره 3
شماره شماره 2
شماره شماره 1
دوره دوره 16 (1393)
دوره دوره 15 (1392)
دوره دوره 14 (1391)
مزروعی, محسن, ابری‌نیا, کارن, جمالی, جلیل, تفضلی, مهدی, بنی‌اسدی, مجید. (1394). فرایندهای ساخت لایه‌های پیل‌سوختی ‌اکسید‌ جامد (مقاله‌مروری). نشریه پژوهشی مهندسی مکانیک ایران, 17(1), 55-82.
محسن مزروعی; کارن ابری‌نیا; جلیل جمالی; مهدی تفضلی; مجید بنی‌اسدی. "فرایندهای ساخت لایه‌های پیل‌سوختی ‌اکسید‌ جامد (مقاله‌مروری)". نشریه پژوهشی مهندسی مکانیک ایران, 17, 1, 1394, 55-82.
مزروعی, محسن, ابری‌نیا, کارن, جمالی, جلیل, تفضلی, مهدی, بنی‌اسدی, مجید. (1394). 'فرایندهای ساخت لایه‌های پیل‌سوختی ‌اکسید‌ جامد (مقاله‌مروری)', نشریه پژوهشی مهندسی مکانیک ایران, 17(1), pp. 55-82.
مزروعی, محسن, ابری‌نیا, کارن, جمالی, جلیل, تفضلی, مهدی, بنی‌اسدی, مجید. فرایندهای ساخت لایه‌های پیل‌سوختی ‌اکسید‌ جامد (مقاله‌مروری). نشریه پژوهشی مهندسی مکانیک ایران, 1394; 17(1): 55-82.

فرایندهای ساخت لایه‌های پیل‌سوختی ‌اکسید‌ جامد (مقاله‌مروری)

مقاله 4، دوره 17، شماره 1 - شماره پیاپی 38، بهار 1394، صفحه 55-82  XML اصل مقاله (1946 K)
نوع مقاله: مقاله علمی پژوهشی
نویسندگان
محسن مزروعی 1؛ کارن ابری‌نیا2؛ جلیل جمالی3؛ مهدی تفضلی4؛ مجید بنی‌اسدی5
1دانشجوی کارشناسی‌ ارشد، دانشکده مهندسی مکانیک، دانشگاه تهران
2استاد، دانشکده مهندسی مکانیک، دانشگاه تهران
3استادیار، دانشگاه آزاد اسلامی، واحد جامع شوشتر
4دانشجوی دکترا، گروه مهندسی مکانیک، دانشگاه صنعتی بابل
5نویسنده مسئول، استادیار، دانشکده مهندسی مکانیک، دانشگاه تهران
چکیده
پیل‌های سوختی اکسید جامد به دلیل تولید انرژی با بازده بالا مخصوصاً در سیکل ترکیبی با توربین بخار و توربین گاز در نیروگاه‌های تولید برق و مقدار بسیار ناچیز آلایندگی در سرار جهان بسیار مورد توجه قرار گرفته است. مهمترین عوامل برای فراگیر شدن این نوع از پیل‌ها افزایش عملکرد, افزایش عمر مفید آنها و مهم‌تر از همه کاهش هزینه در تولید انبوه می‌باشد. دو عامل اصلی برای نیل به این اهداف بهبود مواد تشکیل دهنده لایه‌ها (کاتد، آند و الکترولیت) و روش‌های بهینه برای ساخت این لایه‌ها می‌باشند. در حال حاضر روش‌های ساخت لایه‌های پیل سوختی اکسید جامد عبارتند از: ریخته‌گری نواری, چاپ صفحه‌ای, پالس لیزر، اسپاترینگ، لایه نشانی بخار مواد به صورت فیزیکی و شیمیایی و ... که هدف از این مقاله بررسی فرایندهای ساخت لایه‌های پیل سوختی اکسید جامد می‌باشد که از دیدگاه علم تجربی و مختصری هم از لحاظ اقتصادی به آنها پرداخته شده است.
کلیدواژه‌ها
پیل سوختی اکسید جامد؛ دوغاب؛ لایه‌نشانی؛ سینترینگ؛ کاتد؛ الکترولیت
مراجع

 

[2] Braun, R. J., ''Optimal Design and Operation of Solid Oxide Fuel Cell Systems for Small-scale Stationary Applications'', University of Wisconsin–Madison, Ph.D. Dissertation, (2002).

 

[3] Tabei, S., Sheidaei, A., Baniassadi, M., Pourboghrat, F., and Garmestani, H., ''Microstructure Reconstruction and Homogenization of Porous Ni-YSZ Composites for Temperature Dependent Properties'', Journal of Power Sources, Vol. 235, pp. 74-80, (2013).

 

[4] Hamedani, H. A., Baniassadi, M., Khaleel, M., Sun, X., Ahzi, S., Ruch, D., and Garmestani, H., ''Microstructure, Property and Processing Relation in Gradient Porous Cathode of Solid Oxide Fuel Cells using Statistical Continuum Mechanics'', Journal of Power Sources, Vol. 196. pp. 6325-6331, (2011).

 

[5] Baniassadi, M., Garmestani, H., Li, D., Ahzi, S., Khaleel, M., and Sun, X., ''Three-phase Solid Oxide Fuel Cell Anode Microstructure Realization using Two-point Correlation Functions'', Acta Materialia, Vol. 59, pp. 30-43, (2011).

 

[6] Blum, L., Drenckhahn, W., Greiner, H., and Ivers-Tiffée, E., ''Multi-K W-SOFC Development at Siemens'', Proceedings of the Fourth International Symposium on Solid Oxide Fuel Cells (SOFC-IV), Vol. 91, pp. 163-163, Yokohama, Japan, (1995).

 

[7] Buchkremer, H., Diekmann, U., and Stöver, D., ''Component Manufacturing and Stack Integration of Anode-supported Planar Sofc System'', Proceedings of the Second European Solid Oxide Fuel Cell Forum, Vol. 1,  pp. 221-228, (1996).

 

 [8] Tietz, F., Buchkremer, H. P., and Stöver, D., ''Components Manufacturing for Solid Oxide Fuel Cells'', Solid State Ionics, Vol. 152,  pp. 373-381, (2002).

 

[9] www.suna.org.ir 

 

[10] Huang, K., and Goodenough, J. B., ''Solid Oxide Fuel Cell Technology: Principles, Performance and Operations'', Elsevier, England, Cambridge, (2009).

 

[11] De Souza, S., Visco, S. J., and De Jonghe, L. C., ''Thin-film Solid Oxide Fuel Cell with High Performance at Low-temperature'', Solid State Ionics, Vol. 98,  pp. 57-61, (1997).

 

[12] Villarreal, I., Jacobson, C., Leming, A., Matus, Y., Visco, S., and De Jonghe, L., ''Metal-supported Solid Oxide Fuel Cells'', Electrochemical and Solid-state letters, Vol. 6  pp. A178-A179, (2003).

 

[13] Franco, T., Ilhan, Z., Lang, M., Schiller, G., and Szabo, P., ''Investigation of Porous Metallic Substrates for Plasma Sprayed Thin-film Sofcs'', Solid Oxide Fuel Cells IX (SOFCIX), Hrsg.: SC Singhal und J. Mizusaki, Electrochemical Society, Pennington, NJ,  pp. 344-352, (2005).

 

[14] Zhang, Y., ''Fabrication and Characterisation of Planar and Tubular Solid Oxide Fuel Cell Anodes'', Edinburgh Napier University, MSc by Research, Vol. 2,  pp. 24-24 , (2013).

 

[15] Singhal, S., ''High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications: Fundamentals, Design and Applications'', Elsevier, USA, Washington, (2003).

 

[16] Holtappels, P., and Stimming, U., ''Solid Oxide Fuel Cells (Sofc)'', in:  Handbook of Fuel Cells, John Wiley & Sons, Ltd, New York, (2010).

 

[17] Iwasita, T., Vielstich, W., Lamm, A., and Gasteiger, H., ''Handbook of Fuel Cells'', Handbook of Fuel Cells, 2, Wiley, New York, USA, (2003).

 

[18] Subramania, A., Saradha, T., and Muzhumathi, S., ''Synthesis of Nano-crystalline (Ba0.5 Sr0. 5) Co0. 8fe0. 2O3-Δ Cathode Material by a Novel Sol-gel Thermolysis Process for It-Sofcs'', Journal of Power Sources, Vol. 165, pp. 728-732, (2007).

 

[19] Liu, J., Co, A. C., Paulson, S., and Birss, V. I., ''Oxygen Reduction at Sol–gel Derived La0.8 Sr 0.2 Co0.8 Fe0.2 O3 Cathodes'', Solid State Ionics, Vol. 177,  pp. 377-387, (2006).

 

[20] Kim, S. D., Lee, J. J., Moon, H., Hyun, S. H., Moon, J., Kim, J., and Lee, H. W., ''Effects of Anode and Electrolyte Microstructures on Performance of Solid Oxide Fuel Cells'', Journal of Power Sources, Vol. 169,  pp. 265-270, (2007).

 

[21] Tang, Z., Xie, Y., Hawthorne, H., and Ghosh, D., ''Sol–gel Processing of Sr0.5 Sm0.5 CoO3 Film'', Journal of Power Sources, Vol. 157,  pp. 385-388, (2006).

 

[22] Xia, C., Zhang, Y., and Liu, M., ''Lsm-Gdc Composite Cathodes Derived from a Sol-gel Process Effect of Microstructure on Interfacial Polarization Resistance'', Electrochemical and Solid-state Letters, Vol. 6, pp. A290-A292, (2003).

 

[23] Mehta, K., Xu, R., and Virkar, A. V., ''Two-layer Fuel Cell Electrolyte Structure by Sol-gel Processing'', Journal of Sol-gel Science and Technology, Vol. 11, pp. 203-207, (1998).

 

[24] Pierre, A. C., ''Introduction to Sol-gel Processing'', Springer, New York, (1998).

 

[25] Xu, Z., Rajaram, G., Sankar, J., and Pai, D., ''Electrophoretic Deposition of YSZ Electrolyte Coatings for Sofcs'', Fuel Cells Bulletin, Vol. 2007, pp. 12-16, (2007).

 

[26] Zhitomirsky, I., and Petric, A., ''Electrophoretic Deposition of Electrolyte Materials for Solid Oxide Fuel Cells'', Journal of Materials Science, Vol. 39,  pp. 825-831, (2004).

 

[27] Ishihara, T., Sato, K., and Takita, Y., ''Electrophoretic Deposition of Y2O3‐Stabilized ZrO2 Electrolyte Films in Solid Oxide Fuel Cells'', Journal of the American Ceramic Society, Vol. 79,  pp. 913-919, (1996).

 

[28] Singhal, S., ''Advances in Solid Oxide Fuel Cell Technology'', Solid State Ionics, Vol. 135, pp. 305-313, (2000).

 

[29] Huang, Y., Vohs, J., and Gorte, R., ''Sofc Cathodes Prepared by Infiltration with Various Lsm Precursors'', Electrochemical and Solid-State Letters, Vol. 9, pp. A237-A240, (2006).

 

[30] Gorte, R. J., Kim, H., and Vohs, J. M., ''Novel Sofc Anodes for the Direct Electrochemical Oxidation of Hydrocarbon'', Journal of Power Sources, Vol. 106, pp. 10-15, (2002).

 

[31] Kim, H., Lu, C., Worrell, W., Vohs, J., and Gorte, R., ''Cu-Ni Cermet Anodes for Direct Oxidation of Methane in Solid-oxide Fuel Cells'', Journal of the Electrochemical Society, Vol. 149, pp. A247-A250, (2002).

 

[32] Gross, M. D., Vohs, J. M., and Gorte, R. J., ''A Study of Thermal Stability and Methane Tolerance of Cu-based Sofc Anodes with Electrodeposited Co'', Electrochimical Acta, Vol. 52, pp. 1951-1957, (2007).

 

[33] Qiao, J., Sun, K., Zhang, N., Sun, B., Kong, J., and Zhou, D., ''Ni/YSZ and Ni–CeO2 / YSZ Anodes Prepared by Impregnation for Solid Oxide Fuel Cells'', Journal of Power Sources, Vol. 169,  pp. 253-258, (2007).

 

[34] Fergus, J., Hui, R., Li, X., Wilkinson, D. P., and Zhang, J., ''Solid Oxide Fuel Cells: Materials Properties and Performance'', CRC Press, New York, (2008).

 

[35] Tao, S., and Irvine, J. T., ''A Redox-stable Efficient Anode for Solid-oxide Fuel Cells'', Nature Materials, Vol. 2, pp. 320-323, (2003).

 

[36] Li, Q., Fan, Y., Zhao, H., Sun, L.-P., and Huo, L. H., ''Preparation and Electrochemical Properties of a Sm2− X Srx NiO4 Cathode for an It-Sofc'', Journal of Power Sources, Vol. 167,  64-68, (2007).

 

[37] Nguyen, T. L., Kato, T., Nozaki, K., Honda, T., Negishi, A., Kato, K., and Iimura, Y., ''Application of (Sm0. 5Sr0. 5) CoO3 as a Cathode Material to (Zr, Sc) O2 Electrolyte with Ceria-Based Interlayers for Reduced-temperature Operation Sofcs'', Journal of the Electrochemical Society, Vol. 153,  pp. A1310-A1316, (2006).

 

[38] Zhou, W., Shao, Z., Ran, R., Zeng, P., Gu, H., Jin, W., and Xu, N., ''Ba0.5 Sr 0.5 CO0.8 Fe0.2 O 3− Δ+ Lacoo3 Composite Cathode for Sm0.2 Ce0.8 O1.9 - Electrolyte Based Intermediate-Temperature Solid-oxide Fuel Cells'', Journal of Power Sources, Vol. 168, pp. 330-337, (2007).

 

[39] Hui, R., Wang, Z., Yick, S., Maric, R., and Ghosh, D., ''Fabrication of Ceramic Films for Solid Oxide Fuel Cells Via Slurry Spin Coating Technique'', Journal of Power Sources, Vol. 172, pp. 840-844, (2007).

 

[40] Yin, Y., Li, S., Xia, C., and Meng, G., ''Electrochemical Performance of Gel-cast NiO–Sdc Composite Anodes in Low-temperature Sofcs'', Electrochimica Acta, Vol. 51, pp. 2594-2598, (2006).

 

[41] Wang, Z., Qian, J., Cao, J., Wang, S., and Wen, T., ''A Study of Multilayer Tape Casting Method for Anode-supported Planar Type Solid Oxide Fuel Cells (Sofcs)'', Journal of Alloys and Compounds, Vol. 437, pp. 264-268, (2007).

 

[42] Hung, M.-H., Rao, M., and Tsai, D. S., ''Microstructures and Electrical Properties of Calcium Substituted LafeO3 as Sofc Cathode'', Materials Chemistry and Physics, Vol. 101, pp. 297-302, (2007).

 

[43] Isenberg, A., ''Growth of Refractory Oxide Layers by Electrochemical Vapor-deposition (Evd) at Elevated-temperatures'', Journal of the Electrochemical Society, Vol. 124, pp. C136-C136, (1977).

 

[44] Haldane, M., and Etsell, T., ''Fabrication of Composite Sofc Anodes'', Materials Science and Engineering: B, Vol. 121, pp. 120-125, (2005).

 

[45] Choy, K., ''Chemical Vapour Deposition of Coatings'', Progress in Materials Science, Vol. 48, pp. 57-170, (2003).

 

[46] Meng, G., Song, H., Xia, C., Liu, X., and Peng, D., ''Novel Cvd Techniques for Micro and It‐Sofc Fabrication'', Fuel Cells, Vol. 4, pp. 48-55, (2004).

 

[47] Refke, A., Barbezat, G., Hawley, D., and Schmid, R., ''Low Pressure Plasma Spraying(LPPS) as a Tool for the Deposition of Functional Sofc Components'', ITSC 2004: International Thermal Spray Conference 2004, Advances in Technology and Application,  pp. 61-65, (2004).

]48 [میراحمدی، ا. والفی، ک.، ''کاربرد پلاسما اسپری در پوشش لایه های پیل سوختی اکسید جامد''، اولین کنفرانس ملی هیدروژن و پیل سوختی، )1387(.

 

[49] Kesler, O., Finot, M., Suresh, S., and Sampath, S., ''Thermal Spray: Current Status and Future Trends'', Acta Mater, Vol. 45, pp.  3123-3130, (1997).

 

[50] Tang, Z., Burgess, A., Kesler, O., White, B., and Ben-Oved, N., ''Manufacturing Solid Oxide Fuel Cells with an Axial-injection Plasma Spray System'', Thermal Spray 2007: Global Coating Solutions: Proceedings of the 2007 International Thermal Spray Conference,  pp. 309-309, (2007).

 

[51] Khor, K., Cheng, K., Yu, L., and Boey, F., ''Thermal Conductivity and Dielectric Constant of Spark Plasma Sintered Aluminum Nitride'', Materials Science and Engineering: A, Vol. 347, pp. 300-305, (2003).

 

[52] Kim, S., Kwon, O., Kumar, S., Xiong, Y., and Lee, C., ''Development and Microstructure Optimization of Atmospheric Plasma-sprayed NiO/YSZ Anode Coatings for Sofcs'', Surface and Coatings Technology, Vol. 202, pp. 3180-3186, (2008).

 

[53] Suda, S., Itagaki, M., Node, E., Takahashi, S., Kawano, M., Yoshida, H., and Inagaki, T., ''Preparation of Sofc Anode Composites by Spray Pyrolysis'', Journal of the European Ceramic Society,Vol. 26, pp. 593-597, (2006).

 

[54] Xie, Y., Neagu, R., Hsu, C. S., Zhang, X., and Decès-Petit, C., ''Spray Pyrolysis Deposition of Electrolyte and Anode for Metal-supported Solid Oxide Fuel Cell'', Journal of the Electrochemical Society, Vol. 155, pp. B407-B410, (2008).

 

[55] Filipovic, L., Selberherr, S., Mutinati, G. C., Brunet, E., Steinhauer, S., Köck, A., Teva, J., Kraft, J., Siegert, J., and Schrank, F., ''Modeling Spray Pyrolysis Deposition'', Proceedings of the World Congress on Engineering, Vol. 2, pp. 987-992, (2013).

 

]56 [احمدی، ا. والفی، ک.، ''کاربرد روش پیرولیز در تولید الکترولیت پیل سوختی اکسید جامد''، اولین کنفرانس ملی هیدروژن و پیل سوختی، (1387).

[57] Pederson, L. R., Singh, P., and Zhou, X. D., ''Application of Vacuum Deposition Methods to Solid Oxide Fuel Cells'', Vacuum, Vol. 80, pp. 1066-1083, (2006).

 

[58] Rey-Mermet, S., and Muralt, P., ''Microfabricated Solid Oxide Fuel Cells'', Vol. 3, pp. 53-53, (2008).

 

[59] Holtappels, P., Vogt, U., and Graule, T., ''Ceramic Materials for Advanced Solid Oxide Fuel Cells'', Advanced Engineering Materials, Vol. 7, pp. 292-302, (2005).

 

[60] Nagata, A., and Okayama, H., ''Characterization of Solid Oxide Fuel Cell Device Having a Three-layer Film Structure Grown by Rf Magnetron Sputtering'', Vacuum, Vol. 66, pp. 523-529, (2002).

 

[61] Labrincha, J., Meng, L. J., Dos Santos, M., Marques, F., and Frade, J., ''Evaluation of Deposition Techniques of Cathode Materials for Solid Oxide Fuel Cells'', Materials Research Bulletin, Vol. 28, pp. 101-109, (1993).

 

]62 [بزرگمهری، ش.، حامدی، م.، محبی, ح.، قبادزاده، ا.، اصلان نژاد، ح.، ''ارزیابی عملکرد و ریز ساختار تک سل پیل سوختی اکسید جامد" ، نشریه انرژی ایران، (1391).

آمار
تعداد مشاهده مقاله: 66
تعداد دریافت فایل اصل مقاله: 39
صفحه اصلی | واژه نامه اختصاصی | اخبار و اعلانات | اهداف و چشم انداز | نقشه سایت
ابتدای صفحه ابتدای صفحه

Journal Management System. Designed by sinaweb.