فرایندهای ساخت لایه‌های پیل‌سوختی ‌اکسید‌ جامد (مقاله‌مروری)

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی‌ ارشد، دانشکده مهندسی مکانیک، دانشگاه تهران

2 استاد، دانشکده مهندسی مکانیک، دانشگاه تهران

3 استادیار، دانشگاه آزاد اسلامی، واحد جامع شوشتر

4 دانشجوی دکترا، گروه مهندسی مکانیک، دانشگاه صنعتی بابل

5 نویسنده مسئول، استادیار، دانشکده مهندسی مکانیک، دانشگاه تهران

چکیده

پیل‌های سوختی اکسید جامد به دلیل تولید انرژی با بازده بالا مخصوصاً در سیکل ترکیبی با توربین بخار و توربین گاز در نیروگاه‌های تولید برق و مقدار بسیار ناچیز آلایندگی در سرار جهان بسیار مورد توجه قرار گرفته است. مهمترین عوامل برای فراگیر شدن این نوع از پیل‌ها افزایش عملکرد, افزایش عمر مفید آنها و مهم‌تر از همه کاهش هزینه در تولید انبوه می‌باشد. دو عامل اصلی برای نیل به این اهداف بهبود مواد تشکیل دهنده لایه‌ها (کاتد، آند و الکترولیت) و روش‌های بهینه برای ساخت این لایه‌ها می‌باشند. در حال حاضر روش‌های ساخت لایه‌های پیل سوختی اکسید جامد عبارتند از: ریخته‌گری نواری, چاپ صفحه‌ای, پالس لیزر، اسپاترینگ، لایه نشانی بخار مواد به صورت فیزیکی و شیمیایی و ... که هدف از این مقاله بررسی فرایندهای ساخت لایه‌های پیل سوختی اکسید جامد می‌باشد که از دیدگاه علم تجربی و مختصری هم از لحاظ اقتصادی به آنها پرداخته شده است.

کلیدواژه‌ها


 

[2] Braun, R. J., ''Optimal Design and Operation of Solid Oxide Fuel Cell Systems for Small-scale Stationary Applications'', University of Wisconsin–Madison, Ph.D. Dissertation, (2002).

 

[3] Tabei, S., Sheidaei, A., Baniassadi, M., Pourboghrat, F., and Garmestani, H., ''Microstructure Reconstruction and Homogenization of Porous Ni-YSZ Composites for Temperature Dependent Properties'', Journal of Power Sources, Vol. 235, pp. 74-80, (2013).

 

[4] Hamedani, H. A., Baniassadi, M., Khaleel, M., Sun, X., Ahzi, S., Ruch, D., and Garmestani, H., ''Microstructure, Property and Processing Relation in Gradient Porous Cathode of Solid Oxide Fuel Cells using Statistical Continuum Mechanics'', Journal of Power Sources, Vol. 196. pp. 6325-6331, (2011).

 

[5] Baniassadi, M., Garmestani, H., Li, D., Ahzi, S., Khaleel, M., and Sun, X., ''Three-phase Solid Oxide Fuel Cell Anode Microstructure Realization using Two-point Correlation Functions'', Acta Materialia, Vol. 59, pp. 30-43, (2011).

 

[6] Blum, L., Drenckhahn, W., Greiner, H., and Ivers-Tiffée, E., ''Multi-K W-SOFC Development at Siemens'', Proceedings of the Fourth International Symposium on Solid Oxide Fuel Cells (SOFC-IV), Vol. 91, pp. 163-163, Yokohama, Japan, (1995).

 

[7] Buchkremer, H., Diekmann, U., and Stöver, D., ''Component Manufacturing and Stack Integration of Anode-supported Planar Sofc System'', Proceedings of the Second European Solid Oxide Fuel Cell Forum, Vol. 1,  pp. 221-228, (1996).

 

 [8] Tietz, F., Buchkremer, H. P., and Stöver, D., ''Components Manufacturing for Solid Oxide Fuel Cells'', Solid State Ionics, Vol. 152,  pp. 373-381, (2002).

 

[9] www.suna.org.ir 

 

[10] Huang, K., and Goodenough, J. B., ''Solid Oxide Fuel Cell Technology: Principles, Performance and Operations'', Elsevier, England, Cambridge, (2009).

 

[11] De Souza, S., Visco, S. J., and De Jonghe, L. C., ''Thin-film Solid Oxide Fuel Cell with High Performance at Low-temperature'', Solid State Ionics, Vol. 98,  pp. 57-61, (1997).

 

[12] Villarreal, I., Jacobson, C., Leming, A., Matus, Y., Visco, S., and De Jonghe, L., ''Metal-supported Solid Oxide Fuel Cells'', Electrochemical and Solid-state letters, Vol. 6  pp. A178-A179, (2003).

 

[13] Franco, T., Ilhan, Z., Lang, M., Schiller, G., and Szabo, P., ''Investigation of Porous Metallic Substrates for Plasma Sprayed Thin-film Sofcs'', Solid Oxide Fuel Cells IX (SOFCIX), Hrsg.: SC Singhal und J. Mizusaki, Electrochemical Society, Pennington, NJ,  pp. 344-352, (2005).

 

[14] Zhang, Y., ''Fabrication and Characterisation of Planar and Tubular Solid Oxide Fuel Cell Anodes'', Edinburgh Napier University, MSc by Research, Vol. 2,  pp. 24-24 , (2013).

 

[15] Singhal, S., ''High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications: Fundamentals, Design and Applications'', Elsevier, USA, Washington, (2003).

 

[16] Holtappels, P., and Stimming, U., ''Solid Oxide Fuel Cells (Sofc)'', in:  Handbook of Fuel Cells, John Wiley & Sons, Ltd, New York, (2010).

 

[17] Iwasita, T., Vielstich, W., Lamm, A., and Gasteiger, H., ''Handbook of Fuel Cells'', Handbook of Fuel Cells, 2, Wiley, New York, USA, (2003).

 

[18] Subramania, A., Saradha, T., and Muzhumathi, S., ''Synthesis of Nano-crystalline (Ba0.5 Sr0. 5) Co0. 8fe0. 2O3-Δ Cathode Material by a Novel Sol-gel Thermolysis Process for It-Sofcs'', Journal of Power Sources, Vol. 165, pp. 728-732, (2007).

 

[19] Liu, J., Co, A. C., Paulson, S., and Birss, V. I., ''Oxygen Reduction at Sol–gel Derived La0.8 Sr 0.2 Co0.8 Fe0.2 O3 Cathodes'', Solid State Ionics, Vol. 177,  pp. 377-387, (2006).

 

[20] Kim, S. D., Lee, J. J., Moon, H., Hyun, S. H., Moon, J., Kim, J., and Lee, H. W., ''Effects of Anode and Electrolyte Microstructures on Performance of Solid Oxide Fuel Cells'', Journal of Power Sources, Vol. 169,  pp. 265-270, (2007).

 

[21] Tang, Z., Xie, Y., Hawthorne, H., and Ghosh, D., ''Sol–gel Processing of Sr0.5 Sm0.5 CoO3 Film'', Journal of Power Sources, Vol. 157,  pp. 385-388, (2006).

 

[22] Xia, C., Zhang, Y., and Liu, M., ''Lsm-Gdc Composite Cathodes Derived from a Sol-gel Process Effect of Microstructure on Interfacial Polarization Resistance'', Electrochemical and Solid-state Letters, Vol. 6, pp. A290-A292, (2003).

 

[23] Mehta, K., Xu, R., and Virkar, A. V., ''Two-layer Fuel Cell Electrolyte Structure by Sol-gel Processing'', Journal of Sol-gel Science and Technology, Vol. 11, pp. 203-207, (1998).

 

[24] Pierre, A. C., ''Introduction to Sol-gel Processing'', Springer, New York, (1998).

 

[25] Xu, Z., Rajaram, G., Sankar, J., and Pai, D., ''Electrophoretic Deposition of YSZ Electrolyte Coatings for Sofcs'', Fuel Cells Bulletin, Vol. 2007, pp. 12-16, (2007).

 

[26] Zhitomirsky, I., and Petric, A., ''Electrophoretic Deposition of Electrolyte Materials for Solid Oxide Fuel Cells'', Journal of Materials Science, Vol. 39,  pp. 825-831, (2004).

 

[27] Ishihara, T., Sato, K., and Takita, Y., ''Electrophoretic Deposition of Y2O3‐Stabilized ZrO2 Electrolyte Films in Solid Oxide Fuel Cells'', Journal of the American Ceramic Society, Vol. 79,  pp. 913-919, (1996).

 

[28] Singhal, S., ''Advances in Solid Oxide Fuel Cell Technology'', Solid State Ionics, Vol. 135, pp. 305-313, (2000).

 

[29] Huang, Y., Vohs, J., and Gorte, R., ''Sofc Cathodes Prepared by Infiltration with Various Lsm Precursors'', Electrochemical and Solid-State Letters, Vol. 9, pp. A237-A240, (2006).

 

[30] Gorte, R. J., Kim, H., and Vohs, J. M., ''Novel Sofc Anodes for the Direct Electrochemical Oxidation of Hydrocarbon'', Journal of Power Sources, Vol. 106, pp. 10-15, (2002).

 

[31] Kim, H., Lu, C., Worrell, W., Vohs, J., and Gorte, R., ''Cu-Ni Cermet Anodes for Direct Oxidation of Methane in Solid-oxide Fuel Cells'', Journal of the Electrochemical Society, Vol. 149, pp. A247-A250, (2002).

 

[32] Gross, M. D., Vohs, J. M., and Gorte, R. J., ''A Study of Thermal Stability and Methane Tolerance of Cu-based Sofc Anodes with Electrodeposited Co'', Electrochimical Acta, Vol. 52, pp. 1951-1957, (2007).

 

[33] Qiao, J., Sun, K., Zhang, N., Sun, B., Kong, J., and Zhou, D., ''Ni/YSZ and Ni–CeO2 / YSZ Anodes Prepared by Impregnation for Solid Oxide Fuel Cells'', Journal of Power Sources, Vol. 169,  pp. 253-258, (2007).

 

[34] Fergus, J., Hui, R., Li, X., Wilkinson, D. P., and Zhang, J., ''Solid Oxide Fuel Cells: Materials Properties and Performance'', CRC Press, New York, (2008).

 

[35] Tao, S., and Irvine, J. T., ''A Redox-stable Efficient Anode for Solid-oxide Fuel Cells'', Nature Materials, Vol. 2, pp. 320-323, (2003).

 

[36] Li, Q., Fan, Y., Zhao, H., Sun, L.-P., and Huo, L. H., ''Preparation and Electrochemical Properties of a Sm2− X Srx NiO4 Cathode for an It-Sofc'', Journal of Power Sources, Vol. 167,  64-68, (2007).

 

[37] Nguyen, T. L., Kato, T., Nozaki, K., Honda, T., Negishi, A., Kato, K., and Iimura, Y., ''Application of (Sm0. 5Sr0. 5) CoO3 as a Cathode Material to (Zr, Sc) O2 Electrolyte with Ceria-Based Interlayers for Reduced-temperature Operation Sofcs'', Journal of the Electrochemical Society, Vol. 153,  pp. A1310-A1316, (2006).

 

[38] Zhou, W., Shao, Z., Ran, R., Zeng, P., Gu, H., Jin, W., and Xu, N., ''Ba0.5 Sr 0.5 CO0.8 Fe0.2 O 3− Δ+ Lacoo3 Composite Cathode for Sm0.2 Ce0.8 O1.9 - Electrolyte Based Intermediate-Temperature Solid-oxide Fuel Cells'', Journal of Power Sources, Vol. 168, pp. 330-337, (2007).

 

[39] Hui, R., Wang, Z., Yick, S., Maric, R., and Ghosh, D., ''Fabrication of Ceramic Films for Solid Oxide Fuel Cells Via Slurry Spin Coating Technique'', Journal of Power Sources, Vol. 172, pp. 840-844, (2007).

 

[40] Yin, Y., Li, S., Xia, C., and Meng, G., ''Electrochemical Performance of Gel-cast NiO–Sdc Composite Anodes in Low-temperature Sofcs'', Electrochimica Acta, Vol. 51, pp. 2594-2598, (2006).

 

[41] Wang, Z., Qian, J., Cao, J., Wang, S., and Wen, T., ''A Study of Multilayer Tape Casting Method for Anode-supported Planar Type Solid Oxide Fuel Cells (Sofcs)'', Journal of Alloys and Compounds, Vol. 437, pp. 264-268, (2007).

 

[42] Hung, M.-H., Rao, M., and Tsai, D. S., ''Microstructures and Electrical Properties of Calcium Substituted LafeO3 as Sofc Cathode'', Materials Chemistry and Physics, Vol. 101, pp. 297-302, (2007).

 

[43] Isenberg, A., ''Growth of Refractory Oxide Layers by Electrochemical Vapor-deposition (Evd) at Elevated-temperatures'', Journal of the Electrochemical Society, Vol. 124, pp. C136-C136, (1977).

 

[44] Haldane, M., and Etsell, T., ''Fabrication of Composite Sofc Anodes'', Materials Science and Engineering: B, Vol. 121, pp. 120-125, (2005).

 

[45] Choy, K., ''Chemical Vapour Deposition of Coatings'', Progress in Materials Science, Vol. 48, pp. 57-170, (2003).

 

[46] Meng, G., Song, H., Xia, C., Liu, X., and Peng, D., ''Novel Cvd Techniques for Micro and It‐Sofc Fabrication'', Fuel Cells, Vol. 4, pp. 48-55, (2004).

 

[47] Refke, A., Barbezat, G., Hawley, D., and Schmid, R., ''Low Pressure Plasma Spraying(LPPS) as a Tool for the Deposition of Functional Sofc Components'', ITSC 2004: International Thermal Spray Conference 2004, Advances in Technology and Application,  pp. 61-65, (2004).

]48 [میراحمدی، ا. والفی، ک.، ''کاربرد پلاسما اسپری در پوشش لایه های پیل سوختی اکسید جامد''، اولین کنفرانس ملی هیدروژن و پیل سوختی، )1387(.

 

[49] Kesler, O., Finot, M., Suresh, S., and Sampath, S., ''Thermal Spray: Current Status and Future Trends'', Acta Mater, Vol. 45, pp.  3123-3130, (1997).

 

[50] Tang, Z., Burgess, A., Kesler, O., White, B., and Ben-Oved, N., ''Manufacturing Solid Oxide Fuel Cells with an Axial-injection Plasma Spray System'', Thermal Spray 2007: Global Coating Solutions: Proceedings of the 2007 International Thermal Spray Conference,  pp. 309-309, (2007).

 

[51] Khor, K., Cheng, K., Yu, L., and Boey, F., ''Thermal Conductivity and Dielectric Constant of Spark Plasma Sintered Aluminum Nitride'', Materials Science and Engineering: A, Vol. 347, pp. 300-305, (2003).

 

[52] Kim, S., Kwon, O., Kumar, S., Xiong, Y., and Lee, C., ''Development and Microstructure Optimization of Atmospheric Plasma-sprayed NiO/YSZ Anode Coatings for Sofcs'', Surface and Coatings Technology, Vol. 202, pp. 3180-3186, (2008).

 

[53] Suda, S., Itagaki, M., Node, E., Takahashi, S., Kawano, M., Yoshida, H., and Inagaki, T., ''Preparation of Sofc Anode Composites by Spray Pyrolysis'', Journal of the European Ceramic Society,Vol. 26, pp. 593-597, (2006).

 

[54] Xie, Y., Neagu, R., Hsu, C. S., Zhang, X., and Decès-Petit, C., ''Spray Pyrolysis Deposition of Electrolyte and Anode for Metal-supported Solid Oxide Fuel Cell'', Journal of the Electrochemical Society, Vol. 155, pp. B407-B410, (2008).

 

[55] Filipovic, L., Selberherr, S., Mutinati, G. C., Brunet, E., Steinhauer, S., Köck, A., Teva, J., Kraft, J., Siegert, J., and Schrank, F., ''Modeling Spray Pyrolysis Deposition'', Proceedings of the World Congress on Engineering, Vol. 2, pp. 987-992, (2013).

 

]56 [احمدی، ا. والفی، ک.، ''کاربرد روش پیرولیز در تولید الکترولیت پیل سوختی اکسید جامد''، اولین کنفرانس ملی هیدروژن و پیل سوختی، (1387).

[57] Pederson, L. R., Singh, P., and Zhou, X. D., ''Application of Vacuum Deposition Methods to Solid Oxide Fuel Cells'', Vacuum, Vol. 80, pp. 1066-1083, (2006).

 

[58] Rey-Mermet, S., and Muralt, P., ''Microfabricated Solid Oxide Fuel Cells'', Vol. 3, pp. 53-53, (2008).

 

[59] Holtappels, P., Vogt, U., and Graule, T., ''Ceramic Materials for Advanced Solid Oxide Fuel Cells'', Advanced Engineering Materials, Vol. 7, pp. 292-302, (2005).

 

[60] Nagata, A., and Okayama, H., ''Characterization of Solid Oxide Fuel Cell Device Having a Three-layer Film Structure Grown by Rf Magnetron Sputtering'', Vacuum, Vol. 66, pp. 523-529, (2002).

 

[61] Labrincha, J., Meng, L. J., Dos Santos, M., Marques, F., and Frade, J., ''Evaluation of Deposition Techniques of Cathode Materials for Solid Oxide Fuel Cells'', Materials Research Bulletin, Vol. 28, pp. 101-109, (1993).

 

]62 [بزرگمهری، ش.، حامدی، م.، محبی, ح.، قبادزاده، ا.، اصلان نژاد، ح.، ''ارزیابی عملکرد و ریز ساختار تک سل پیل سوختی اکسید جامد" ، نشریه انرژی ایران، (1391).