کمانش محوری و پایداری دینامیکی میکروپوسته‌‌های استوانه‌ای FGM براساس تئوری تنش کوپلی اصلاح شده

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

1 دانشجوی دکترا، دانشکده مهندسی مکانیک، دانشگاه گیلان

2 استاد، دانشکده مهندسی مکانیک، دانشگاه گیلان

3 دانشیار، دانشکده مهندسی مکانیک، دانشگاه گیلان

4 دانشجوی کارشناسی، دانشکده مهندسی مکانیک، دانشگاه گیلان

چکیده

کمانش محوری و پایداری دینامیکی میکروپوسته­های استوانه­ای هوشمند (FGM) با ارائه یک مدل پوسته وابسته ابعادی براساس تئوری تنش کوپلی اصلاح شده (MCST) بررسی شده است. با استفاده از اصل همیلتون، معادلات مرتبه بالا و شرایط مرزی بدست می­آیند. سپس، روش حل ناویر برای پیش­بینی بار کمانش بحرانی میکرو­پوسته های استوانه­ای با شرایط مرزی ساده استفاده شده است. همچنین، با بیان معادلات حاکم به صورت معادلات Mathieu–Hill و استفاده از روش Bolotin، پایداری دینامیکی میکروپوسته­ها تحت بار نوسانی فشاری محوری بررسی شده است. تأثیر ضریب بار استاتیکی، پارامتر مقیاس طول بی­بعد، شاخص گرادیانی ماده، نسبت طول به شعاع و نسبت طول به ضخامت بر بار کمانشی و پایداری دینامیکی میکرو­پوسته­های استوانه­ای مورد بررسی قرار گرفته است

کلیدواژه‌ها


[1] Meschet, M.J., Brown, J.Q., Guice, K.B., and Lvov, Y.M., "Polyelectrolyte Microshells as Carriers for Fluorescent Sensors: Loading and Sensing Properties of a Ruthenium-based Oxygen Indicator", Journal of Nanoscience and Nanotechnology, Vol. 2, pp. 411-416, (2002).

 

[2] Mescher, M.J., Houston, K., Bernstein, J.J., Kirkos, G.A., Cheng, J., and Cross, L.E., "Novel MEMS Microshell Transducer Arrays for High-resolution Underwater Acoustic Imaging Applications", Sensors, Vol. 1, pp. 541-546, (2002).

 

[3] Chong, A.C.M., and Lam, D.C.C., "Strain Gradient Plasticity Effect in Indentation Hardness of Polymers", Journal of Materials Research, Vol. 14, pp. 4103-4110, (1999).

 

[4] Fleck, N.A., Muller, G.M., Ashby, M.F., and Hutchinson, J.W., "Strain Gradient Plasticity: Theory and Experiment", Acta Metallurgica et Materialia, Vol. 42, pp. 475-487, (1994).

 

[5] Stolken, J.S., and Evans, A.G., "Microbend Test Method for Measuring the Plasticity Length Scale", Acta Metallurgical Materialia, Vol. 46, pp. 5109-5115, (1998).

 

[6] Ansari, R., Sahmani, S., and Arash, B., "Nonlocal Plate Model for Free Vibrations of Single-layered Graphene Sheets", Physics Letters A, Vol. 375, pp. 53-62, (2010).

[7] Ansari, R., Sahmani, S., and Rouhi, H., "Axial Buckling Analysis of Single-walled Carbon Nanotubes in Thermal Environments via Rayleigh-Ritz Technique", Computational Materials Science, Vol. 50, pp. 3050-3055, (2011).

 

[8] Ansari, R., Rouhi, H., and Sahmani, S., "Calibration of the Analytical Nonlocal Shell Model for Vibrations of Double-walled Carbon Nanotubes with Arbitrary Boundary Conditions using Molecular Dynamics", International Journal of Mechanical Sciences, Vol. 53, pp. 786-792, (2011).

 

[9] Ansari, R., Gholami, R., and Darabi, M. A., "A Nonlinear Timoshenko Beam Formulation Based on Strain Gradient Theory", Journal of Mechanics of Materials and Structures, Vol. 7, pp. 195-211, (2012).

 

[10] Ansari, R., Rouhi, H., and Sahmani, S., "Thermal Effect on Axial Buckling Behavior of Multi-walled Carbon Nanotubes Based on Nonlocal Shell Model", Physica E, Vol. 44, pp. 373-378, (2011).

 

[11] Ansari, R., Gholami, R., and Sahmani, S., "Free Vibration of Size-dependent Functionally Graded Microbeams Based on a Strain Gradient Theory", Composite Structures, Vol. 94, pp. 221-228, (2011).

 

[12] Sahmani, S., and Ansari, R., "On the Free Vibration Response of Functionally Graded Higher-order Shear Deformable Microplates Based on the Strain Gradient Elasticity Theory", Composite Structures, Vol. 95, pp. 430-442, (2013).

 

[13] Mindlin, R.D., and Tiersten, H.F., "Effects of Couple-stresses in Linear Elasticity", Archive for Rational Mechanics and Analysis, Vol. 11, pp. 415-448, (1962).

 

[14] Koiter, W.T., "Couple Stresses in the Theory of Elasticity I and II", Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, B, Vol. 67, pp. 17-44, (1964).

 

[15] Eringen, A.C., and Suhubi, E.S., "Nonlinear Theory of Simple Microelastic Solid-I", International Journal of Engineering Science, Vol. 2, pp. 189-203, (1964).

 

[16] Eringen, A.C., and Suhubi, E.S., "Nonlinear Theory of Simple Microelastic Solid-II", International Journal of Engineering Science, Vol. 2, pp.389-404, (1964).

 

[17] Mindlin, R.D., "Micro-Structure in Linear Elasticity", Archive for Rational Mechanics and Analysis, Vol. 16, pp. 51-78, (1964).

 

[18] Toupin, R.A., "Theory of Elasticity with Couple Stresses", Archive for Rational Mechanics and Analysis, Vol. 17, pp. 85-112, (1964).

 

[19] Mindlin, R.D., "Second Gradient of Strain and Surface Tension in Linear Elasticity", International Journal of Solids and Structures, Vol. 1, pp. 417-438, (1965).

 

[20] Mindlin, R.D., and Eshel, N.N., "On First Strain-gradient Theories in Linear Elasticity", International Journal of Solids and Structures, Vol. 4, pp. 109-124, (1968).

 

 

[21] Eringen, A.C., "On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves", Journal of Applied Physics, Vol. 54, pp. 4703-4710, (1983).

 

[22] Vardoulaksi, I., Exadaktylos, G., and Kourkoulis, S.K., "Bending of Marble with Intrinsic Length Scales: A Gradient Theory with Surface Energy and Size Effects", Journal De Physique, Vol. 8, pp. 399-406, (1998).

 

[23] Yang, F., Chong, A.C.M., Lam, D.C.C., and Tong, P., "Couple Stress Based Strain Gradient Theory for Elasticity", International Journal of Solids and Structures, Vol. 39, pp. 2731–2743, (2002).

 

[24] Xia, W., Wang, L., and Yin, L., "Nonlinear Non-classical Microscale Beams: Static Bending, Postbuckling and Free Vibration", International Journal of Engineering Science, Vol. 48, pp. 2044-2053, (2010).

 

[25] Asghari, M., Rahaeifard, M., Kahrobaiyan, M.H., and Ahmadian, M.T., "The Modified Couple Stress Functionally Graded Timoshenko Beam Formulation", Materials and Design, Vol. 32, pp.1435-1443, (2011).

 

[26] Ke, L.L., and Wang, Y.S., "Size Effect on Dynamic Stability of Functionally Graded Microbeams Based on a Modified Couple Stress Theory", Composite Structures, Vol. 93, pp. 342-350, (2011).

 

[27] Ma, H.M., Gao, X.-L., and Reddy, J.N., "A Microstructure-dependent Timoshenko Beam Model Based on a Modified Couple Stress Theory", Journal of the Mechanics and Physics of Solids, Vol. 56, pp.3379-3391, (2008).

 

[28] Ke, L.L., Wang, Y.S., and Wang, Z.D., "Thermal Effect on Free Vibration and Buckling of Size-dependent Microbeams", Physica E, Vol. 43, pp.1387-1393, (2011).

 

[29] Ke, L. L., Wang, Y. S., Yang, J., and Kitipornchai, S., "Free Vibration of Size-dependent Mindlin Microplates Based on the Modified Couple Stress Theory", Journal of Sound and Vibration, Vol. 331, pp. 94-106, (2012).

 

[30] Papargyri-Beskou, S., Tsinopoulos, S. V., and Beskos, D. E., "Wave Propagation in and Free Vibrations of Gradient Elastic Circular Cylindrical Shells", Acta Mechanica, Vol. 223, pp. 1789–1807, (2012).

 

[31] Lazopoulos, K.A., and Lazopoulos, A.K., "Nonlinear Strain Gradient Elastic Thin Shallow Shells", European Journal of Mechanics A/Solids, Vol. 30, pp. 286-292, (2011).

 

[32] Papargyri-Beskou, S., and Beskos, D.E., "Stability Analysis of Gradient Elastic Circular Cylindrical Thin Shells", International Journal of Engineering Science, Vol. 47, pp. 1379–1385, (2009).

 

[33] Altenbach, J., Altenbach, H., and Eremeyev, V.A., "On Generalized Cosserat-type Theories of Plates and Shells: A Short Review and Bibliography", Archive of Applied Mechanics, Vol. 80, pp. 73–92, (2010).

 

[34] Ganapathi, M., "Dynamic Stability Characteristics of Functionally Graded Materials Shallow Spherical Shells", Composite Structures, Vol. 79, pp. 338–343, (2007).

 

[35] Fares, M.E., Elmarghany, M.K., and Atta, D., "An Efficient and Simple Refined Theory for Bending and Vibration of Functionally Graded Plates", Composite Structures, Vol. 91, pp. 296–305, (2009).

 

[36] Donnell, L.H., "Beam, Plates and Shells", McGraw-Hill, New York, USA, (1976).

 

[37] Bolotin, V.V., "The Dynamic Stability of Elastic Systems", San Francisco, Holden- Day, (1964).

 

[38] Lam, D.C.C., Yang, F., Chong, A.C. M., Wang, J., and Tong, P., "Experiments and Theory in Strain Gradient Elasticity", Journal of the Mechanics and Physics of Solids, Vol. 51, pp. 1477–1508, (2003).