دیاگرام بدون‌بُعد دامنه کارکرد شیرهای کنترلی اتوماتیک شکست خط انتقال گاز

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه صنعتی نوشیروانی بابل

چکیده

شیرهای کنترلی اتوماتیک شکست خط به دلایل متعدد در مناطق صعب العبور و با توجه به نیاز پدافندی غیرعامل یا حفاظت از اکوسیستم روی خطوط انتقال گاز نصب می‌گردند. اثر مشخصه‌های قطر اوریفیس، فشار اولیه خط و نرخ افت فشار شکست خط بر اختلاف فشار تنظیمی شیر بصورت آزمایشگاهی با گاز نیتروژن بررسی شد. با افزایش نرخ افت فشار شکست یا کاهش قطر اوریفیس یا فشار اولیه خط، این اختلاف فشار افزایش می‌یابد. زمان دست‌یابی به اختلاف فشار تنظیمی، تخمین ‌زده شد. دیاگرام اختلاف فشار تنظیمی بدون‌بعد برحسب نرخ افت فشار بدون‌بعد در دامنه کارکرد شیر کنترلی اتوماتیک ارائه شد.

کلیدواژه‌ها

موضوعات


[1] Nesbitt, B., “Handbook of Valves and Actuators: Valve and Actuators Selection”, Chapter 19, Butterworth-Heinemann, pp. 425-432, (2011).

 

[2] Zhang, P., “Advanced Industrial Control Technology: A Handbook for Engineers and Researchers”, Sensors and Actuators for Industrial Control, Chapter 1, pp. 2-186, (2010).

 [3] Wang, G.H., and Zhang, W.F., “The Determination Method of Proper Value of Pressure Drop Rate Pipe for the Fast Block Valve on Pipeline”, Ph.D. Thesis, China University of Petroleum Beijing, (2004).

 

[4] Wang, W.L., Gao, Y.H., and Lai, J.B., “Setting of Pressure Drop Rate in Pipe Burst Detection System on Natural Gas Pipeline Block Valve”, Gas Heat, Vol. 33, No. 7, pp. 19-23, (2013).

 

[5] Zuo, L., Jiang, F., and Jin, B., “Value Setting for the Rate of Pressure Drop of Automatic Line-break Control Valves in Natural Gas Pipelines”, Journal of Natural Gas Sciences and Engineering, Vol. 26, pp. 803-809, (2015).

 

[6] Harriott, G.M., “Gas Pipeline Simulation: Leak Detection”, In: Proc., 42nd Annual Meeting of the Pipeline Simulation Interest Group (PSIG), Pipeline Simulation Interest Group, Houston, TX, (2011).

 

[7] Noguerol, R., “Pipeline Control Modes and their Effect on Model-based Leak Detection”, In: Proc., 42nd Annual Meeting of the Pipeline Simulation Interest Group (PSIG), Pipeline Simulation Interest Group, Houston, TX, (2011).

 

[8] Reddy, H.P., Narasimhan, S., and Bhallamudi, S.M., “Leak Detection in Gas Pipeline Networks using an Efficient State Estimator, Part-I: Theory and Simulations”, Comput. Chem. Eng., Vol. 35, No. 4, pp. 651-661, (2011a).

 

[9] Reddy, H.P., Narasimhan, S., and Bhallamudi, S.M., “Leak Detection in Gas Pipeline Networks using an Efficient State Estimator, Part II. Experimental and Field Evaluation”, Comput. Chem. Eng., Vol. 35, No. 4, pp. 662-670, (2011b).

 

[10] Lacerda, S.A.M., and Elias, G.P., “The Use of Pipeline Simulation to Analyse the Effects of a Gas Pipeline Rupture”, In: Proc., 41st Annual Meeting of the Pipeline Simulation Interest Group (PSIG), Pipeline Simulation Interest Group, Houston, TX, (2010).

 

[11] AL-Rasheed, M., Brell, A., and Al-Qaffas, S., “Pipeline Rupture Consequences Mitigation Comprehensive Study”, In: Proc., 41st Annual Meeting of the Pipeline Simulation Interest Group (PSIG), Pipeline Simulation Interest Group, Houston, TX, (2010).

 

[12] Peekema, R.M., “Causes of Natural Gas Pipeline Explosive Ruptures”, J. Pipeline Syst. Eng. Pract., Vol. 4, No. 1, pp. 74-80, (2013).

 

[13] Richards, F., “Failure Analysis of a Natural Gas Pipeline Rupture”, J. Fail. Anal. Prev, Vol. 13, No. 6, pp. 653-657, (2013).

 

[14] Phan, T.T., and Sawin, A.J., “Automatic Linebreak Control Valve Case Study”, Proc., 43rd Annual Meeting of the Pipeline Simulation Interest Group (PSIG), Pipeline Simulation Interest Group, Houston, TX, (2012).

 

[15] Sorli, M., Gastaldi, L., Codina, E., and Heras, S., “Dynamic Analysis of Pneumatic Actuators”, Simulation Practice and Theory, Vol. 7, No. 5-6, pp. 589-602, (1999).

 

[16] Sekhavat, P., Sepehri, N., and Wu, Q., “Impact Stabilizing Controller for Hydraulic Actuators with Friction: Theory and Experiments”, Control Engineering Practice, Vol. 14, pp. 1423-1433, (2006).

 

[17] Oriol, G.B., Campanile, F., Galceran, S.A., Montesinos, D.M., and Rull, J.D., “Hydraulic Actuator Modeling for Optimization of Mechatronic and Adaptronic Systems”, Mechatronics, Vol. 18, pp. 634-640, (2008).

 

[18] Rongjie, K., Zongxia, J., Shaoping, W., and Lisha, C., “Design and Simulation of Electro-hydrostatic Actuator with a Built-in Power Regulator”, Chinese Journal of Aeronautics, Vol. 22, pp. 700-706, (2009).

 

[19] Márton, S., Fodor, S., and Sepehri, N., “A Practical Method for Friction Identification in Hydraulic Actuators”, Mechatronics, Vol. 21, pp. 350-356, (2011).

 

[20] Mehmood, A., Laghrouche, S., and Bagdouri, M., “Modeling Identification and Simulation of Pneumatic Actuator for VGT System”, Sensors and Actuators A, Vol. 165, pp. 367–378, (2011).

 

[21] Yaoxing, S., Hang, Y., Zongxia, J., and Nan, Y., “Matching Design of Hydraulic Load Simulator with Aerocraft Actuator”, Chinese Journal of Aeronautics, Vol. 26, No. 2, pp. 470-480, (2013).

 

[22] Li, K., Zhong, L., Lu, K., and Ping, Y., “Thermal-hydraulic Modeling and Simulation of the Hydraulic System Based on the Electro-hydrostatic Actuator”, Procedia Engineering, Vol. 80, pp. 272 – 281, (2014).

 

[23] Harris, P., Nolan, S., Garet, E., and Donnell, O., “Energy Optimisation of Pneumatic Actuator Systems in Manufacturing”, Journal of Cleaner Production, Vol. 72, pp. 35-45, (2014).

 

[24] Liu, B., Hou, Y., Li, D., and Yang, J., “A Thermal Bubble Micro-actuator with Induction Heating”, Sensors and Actuators A, Vol. 2, No. 2, pp. 8–14, (2015).

 

[25] Guo, K., Wei, J., Fang, J., Feng, R., and Xiaochen, W., “Position Tracking Control of Electro-hydraulic Single-rod Actuator Based on an Extended Disturbance Observer”, Mechatronics, Vol. 27, pp. 47–56, (2015).