مطالعه تاثیر دیواره طیفی بر انتقال حرارت ترکیبی تابش-جابجایی داخل کانال مستطیلی به روش عددی

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

دانشگاه شهید باهنر کرمان، دانشکده فنی و مهندسی

چکیده

چکیده:کار حاضر به مطالعه عددی انتقال‌حرارت ترکیبی تابش-جابجایی، داخل کانال مستطیلی دو بعدی می‌پردازد. محیط مورد نظر، گاز تابشی شامل مخلوطی از هوا، دی اکسید کربن و بخار آب می‌باشد. دیواره پایین کانال غیرخاکستری از جنس سیلیکون یا ژرمانیوم و دیواره بالای کانال خاکستری فرض می‌شود. تاثیرافزایش دمای دیواره کانال و درصدهای مولی گازها، بر رفتار حرارتی سیستم در حالت رفتار طیفی سطوح بررسی شده است. م. نتایج نشان می‌دهد، در حالتی که دیواره طیفی از جنس ژرمانیوم است افزایش درصد مولی گازهای تشکیل دهنده، موجب افزایش شار‌حرارتی کل روی دیواره پایین کانال می‌شود.

کلیدواژه‌ها

موضوعات


[1] Viskanta, R.," Overview of Convection and Radiation in High Temperature", International Journal of Engineering Science, Vol. 36, pp. 1677-1699, (1998).

 

[2] Modest, M.F., "Radiative Heat Transfer", Academic Press, San Diego, Second Edittion, (2003).

 

[3] Siegel, R., and Howell, J.R.,"Thermal Radiation Heat Transfer", Hemisphere, Washington, Wash, USA, 3rd Edition, (1992).

 

[4] Lauriat, G., "A Numerical Study of Thermal  Insulation  Enclosure: Influenceof the Radiative Transfer", ASME HTD, pp. 63-71, (1980).

 

[5] Chai, J.C., Lee, H.S., and Patankar, S.V., "Finite Volume Method for Radiation Heat Transfer", Journal of Thermophysics and Heat Transfer, Vol. 8, No. 3, pp. 419-425, (1994).

 

[6] Mishra, S.C., and Roy, H.K., "Solving Transient Conduction–radiation Problems using the Lattice Boltzrnann Method and the Finite Volume Method", Journal of Computational Physics, Vol. 223, pp. 89–107, (2007).

 

[7] Kim, M.Y., Baek, S.W., and Lee, C.Y., "Prediction of Radiative Heat Transfer Between Two Concentric Spherical Enclosures with the Finite Volume Method", International Journal of Heat Mass Transfer, Vol. 51, pp. 4820–4828, (2008).

 

[8] Lockwood, F.C., and Shah, N.G., "A New Radiation Solution Method for Incorporation in General Combustion Prediction Procedures", Symposium (International) on Combustion, Vol. 18, pp. 1405-1414, (1981).

 

[9] Anand, N., and Mishra, S. C., "The Discrete Transfer Method Applied to the Radiative Heat Transfer in a Variable Refractive Index Semitransparent Medium", Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 102, pp. 432–440, (2006).

 

[10] Viskantaand, R., and Grosh, R. J., "Heat Transfer in a Thermal Radiation Absorbing and Scattering Medium", International Developments in Heat Transfer Part IV, pp. 820–828, (1961).

 

[11] Menguc, M. P., and Viskanta, R., "Radiation Heat Transfer in Combustion Systems", Energy Combustion Science,Vol. 13, pp. 97–160, (1987).

 

[12] Khalil, E.E., and Truelove, J. S., "Calculation of Radiative Heat Transfer in a Large Gas Fired Furnace", Letters in Heat and Mass Transfer, Vol. 4, pp. 353–365, (1977).

 

[13] Mezrhab, A., Lemonnier, D., Meftah, S., and Benbrik, A., "Numerical Study of Double Diffusion Convection Coupled to Radiation in a Square Cavity Filled with a Participating Gray Gas", Journal of Physics D: Applied Physics,Vol. 41, pp. 195501–195517, (2008).

 

[14] Fiveland, W. A., "Discrete Ordinates Solution of the Radiative Transport Equation for Rectangular Enclosures", Journal Heat Transfer, Vol. 106,  No. 4, pp. 699–706, (1984).

 

[15] Yucel, A., Acharya, S., and Williams, M.L., "Natural Convection and Radiation in a Square Enclosure", Numerical Heat Transfer, Part A: Application, Vol. 15, pp. 261–278, (1989).

 

[16] Yucel, A., Acharya, S., and Williams, M.L., "Natural Convection of a Radiating Fluid in Square Enclosure with Perfectly Conducting Walls", Sadhana, Vol. 19, pp. 751–764, (1994).

 

[17] Mishra, S.C., Roy, H.K., and Misra, N., "Discrete Ordinate Method with a New and a Simple Quadrature Scheme", Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 101, pp. 249–262, (2006).

 

[18] Moufekkir, F., Moussaoui, M.A., Mezrhab, A., Naji, H., and Lemonnier, D., "Numerical Prediction of Heat Transfer by Natural Convection and Radiation in an Enclosure Filled with an Isotropic Scattering Medium", Journal of Quantitative Spectroscopy &Radiative Transfer, Vol. 113, pp. 1689–1704, ( 2012).

 

[19] Chiu, H., Jang, J., and Yan, W., "Mixed Convection Heat Transfer in Horizontal Rectangular Ducts with Radiation Effects", International Journal of Heat and Mass Transfer, Vol. 50, No. 15, pp. 2874-2882, (2007).

 

[20] Chiu, J., Jang, W., and Yan W., "Mixed Convection Heat Transfer in Inclined Rectangular Ducts with Radiation Effects", International Journal of Heat and Mass Transfer, Vol. 51, No. 5, pp. 1085-1094,( 2008)

 

[21] Bahreini, S., Gandjalikhan Nassab, S.A., and Moein Addini, M., "Inverse Boundary Design Problem of Combined Radiation-convection Heat Transfer in Laminar Recess Flow", International Journal of Engineering-Transactions C: Aspects, Vol. 29, No. 3, pp. 394-402, (2016).

 

[22]  سمیرا پایان ، سید مسعود حسینی سروری، "طراحی معکوس مرزی کانالهای دو بعدی با جابجایی اجباری – تابش"، هفدهمین کنفرانس سالانه مهندسی مکانیک، تهران، دانشکده فنی دانشگاه تهران، (1388).

 

[23] احمدرضا رحمتی، مهدی جمالی، "انتقال حرارت ترکیبی جابجایی آزاد و تشعشع گرمایی درون محفظه با اجزاء گرم افقی"، بیست و دومین کنفرانس سالانه مهندسی مکانیک، اهواز، انجمن مهندسان مکانیک ایران، دانشگاه شهید چمران اهواز، (1393).

 

[24] Bergman, T.L., Incropera, F.P., DeWitt, D.P., and Lavine, A.S., "Fundamentals of Heat and Mass Transfer", John Wiley & Sons, New York,) 2011(.

 

[25] Yunus Cengel, A., "Thermodynamics : An Engineering Approach", McGraw-Hill, New York, pp. 856-905, (2002).

 

[26] Mahapatra, S.K., Dandapat, B.K., and Sarkar, A., "Analysis of Combined Conduction and Radiation Heat Transfer in Presence of Participating Medium by the Development of Hybrid Method", Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 102, No. 2, pp. 277–292, (2006).

 

[27] Touloukian, M., Sarkis, Y., and David DeWitt, P.," Thermophysical Properties of Matter-the TPRC Data Series. Thermal Radiative Properties-metallic Elements and Alloy (Reannouncement)" Data Book. No. AD-A-951941/4/XAB. Purdue Univ., Lafayette, IN (United States). Thermophysical and Electronic Properties Information Center,Vol. 7, Chapter. 2, (1970).