بررسی عددی اثر تغییر هندسه بر روی الگوی جریان و عملکرد سیکلون گاز-ذره

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

1 مربی/دانشگاه آزاد

2 مربی دانشگاه آزاد اسلامی واحد دورود

3 استادیار مهندسی مکانیک دانشگاه آزاد دزفول

4 گروه مهندسی مکانیک، دانشگاه سمنان، سمنان، ایران

چکیده

درون سیکلون‌های گازی جریان پیچیده‌ای با شدت چرخش بسیار بالا حکمفرما می‌باشد که متحمل نرخ تنش-کرنش زیادی است. برای شبیه‌سازی فاز گاز از مدل آشفته RSM و برای ارزیابی عملکرد ذرات کربنات کلسیم از روش آماری اویلری-لاگرانژی استفاده شده است. در این مطالعه با تغییر ارتفاع بخش جداسازی در سیکلون تغییر در الگوی جریان و عملکرد آن بررسی می‌شود. با افزایش ارتفاع استوانه سیکلون سرعت مماسی و ناحیه ورتکس کاهش می‌یابند. از سوی دیگر افزایش این پارامتر هندسی موجب افزایش نرخ جریان پایین دست در سرعت محوری، افزایش افت فشار و همچنین افزایش عملکرد سیکلون را به دنبال دارد.

کلیدواژه‌ها

موضوعات


[1] Alexander, R. M., “Fundamentals of Cyclone Design and Operation”, in Proc. Aust. Inst. Min. Met, Vol. 152, No. 3, pp. 152-153, (1949).

 

[2]  Elsayed, K., and Lacor, C., “The Effect of Cyclone Inlet Dimensions the Flow Pattern and Performance”, Applied Mathematical Modelling, Vol. 35, No. 4, pp. 1952–1968, (2011).

 

[3]  Zhao, B., Su, Y., and Zhang, J., “Simulation of Gas Flow Pattern and Separation Efficiency in Cyclone with Conventional Single and Spiral Double Inlet Configuration”, Chemical Engineering Research and Design, Vol. 84, No. 12, pp. 1158–1165, (2006).

 

[4]  Chuah, T. G., Gimbun, J., and Choong, T. S. Y., “A CFD Study of the Effect of Cone Dimensions on Sampling Aerocyclones Performance and Hydrodynamics”, Powder Technol., Vol. 162, pp. 126–132, (2006).

 

[5]  Xiang, R., Park, S. H., and Lee, K. W., “Effects of Cone Dimension on Cyclone Performance”, Journal of Aerosol Science, Vol. 32, No. 4, pp. 549–561, (2001).

 

[6]  Kaya, F., and Karagoz, I., “Numerical Investigation of Performance Characteristics of a Cyclone Prolonged with a Dipleg”, Chemical Engineering Journal, Vol. 151, No. 1, pp. 39–45, (2009).

 

[7]  Qian, F., Zhang, J., and Zhang, M., “Effects of the Prolonged Vertical Tube on the Separation Performance of a Cyclone”, Journal of Hazardous Materials, Vol. 136, pp. 822–829, (2006).

 

[8]  Yoshida, H., Nishimura, Y., Fukui, K., and Yamamoto, T., “Effect of Apex Cone Shape on Fine Particle Classification of Gas-cyclone”, Powder Technology, Vol. 204, No. 1, pp. 54–62, (2010).

 

[9]  Khalkhali, A., and Safikhani, H., “Engineering Optimization Pareto Based Multi-objective Optimization of a Cyclone Vortex Finder using CFD, GMDH Type Neural Networks and Genetic Algorithms”, Engineering Optimization, Vol. 44, No. 1, pp. 105–118, (2011).

 

[10] Raoufi, A., Shams, M., Farzaneh, M., and Ebrahimi, R., “Numerical Simulation and Optimization of Fluid Flow in Cyclone Vortex Finder,” Chemical Engineering and Processing: Process Intensification, Vol. 47, No. 1, pp. 128–137, (2008).

 

[11] Safikhani, H., Akhavan-Behabadi, M. A., Shams, M., and Rahimyan, M. H., “Numerical Simulation of Flow Field in Three Types of Standard Cyclone Separators”, Advanced Powder Technology, Vol. 21, No. 4, pp. 435–442, (2010).

 [12]     Hoffmann, A. C., De Groot, M., Peng, W., Dries, H. W. A., and Kater, J., “Advantages and Risks in Increasing Cyclone Separator Length”, AIChE Journal, Vol. 47, No. 11, pp. 2452–2460, (2001).

 

[13] Avci, A., and Karagoz, I., “Effects of Flow and Geometrical Parameters on the Collection Efficiency in Cyclone Separators”, Journal of Aerosol Science, Vol. 34, pp. 937–955, (2003).

 

[14] Olson, T. J., and Van Ommen, R., “Optimizing Hydrocyclone Design using Advanced CFD Model”, Minerals Engineering, Vol. 17, No. 5, pp. 713–720, (2004).

 

[15] Cullivan, J. C., Williams, R. a., Dyakowski, T., and Cross, C. R., “New Understanding of a Hydrocyclone Flow Field and Separation Mechanism from Computational Fluid Dynamics”, Minerals Engineering, Vol. 17, pp. 651–660, (2004).

 

[16] Narasimha, M., Sripriya, R., and Banerjee, P. K., “CFD Modelling of Hydrocyclone—Prediction of Cut Size”, International Journal of Mineral Processing, Vol. 75, No. 1, pp. 53–68, (2005).

 

[17] Gao, X., Chen, J., Feng, J., and Peng, X., “Numerical Investigation of the Effects of the Central Channel on the Flow Field in an Oil–gas Cyclone Separator”, Computers & Fluids, Vol. 92, pp. 45–55, (2013).

 

[18] Parvaz, F., Hosseini, S.H., Ahmadi, G., and Elsayed, K., “Impacts of the Vortex Finder Eccentricity on the Flow Pattern and Performance of a Gas Cyclone”, Separation and Purification Technology, Vol. 187, pp. 1-18, (2017).

 

[19] Oh, J., Choi, S., and Kim, J., “Numerical Simulation of an Internal Flow Field in a Uniflow Cyclone Separator”, Powder Technology, Vol. 274, pp. 135-145, (2015).

 

[20] Gao, X., Chen, J., Feng, J., and Peng, X., “Numerical and Experimental Investigations of the Effects of the Breakup of Oil Droplets on the Performance of Oil–gas Cyclone Separators in Oil-injected Compressor Systems”, International Journal of Refrigeration, Vol. 36, No. 7, pp. 1894-1904, (2013).

 

[21] Safikhani, H., and Mehrabian, P., “Numerical Study of Flow Field in New Cyclone Separators”, Advanced Powder Technology, Vol. 27, No. 2, pp. 379-387, (2016).

 

[22] Elsayed, K., and Lacor, C., “The Effect of Cyclone Vortex Finder Dimensions on the Flow Pattern and Performance using LES”, Computers & Fluids, Vol. 71, pp. 224-239, (2013).

 

[23] Elsayed, K., and Lacor, C., “Numerical Modeling of the Flow Field and Performance in Cyclones of Different Cone-tip Diameters”, Computers & Fluids,  Vol. 51, No. 1, pp. 48-59, (2011).

 

[24] Gronald, G., and Derksen, J.J., “Simulating Turbulent Swirling Flow in a Gas Cyclone: A Comparison of Various Modeling Approaches”, Powder Technology, Vol. 205, No. 1, pp. 160-171 (2011).

 

[25] Elsayed, K., and Lacor, C., “Optimization of the Cyclone Separator Geometry for Minimum Pressure Drop using Mathematical Models and CFD Simulations”, Chemical Engineering Science, Vol. 65, No. 22, pp. 6048–6058 (2010).

 

[26]  Hoekstra, A.J., “Gas Flow Field and Collection Efficiency of Cyclone Separators”, Ph.D. Thesis, Technical University Delft, Amsterdam, Netherlands, (2000).

 

[27]  Brar, L.S., Sharma, R.P., and Elsayed, K., “The Effect of the Cyclone Length on the Performance of Stairmand High-efficiency Cyclone”, Powder Technology, Vol. 286, pp. 668-677, (2015).

 

[28]  Zhao, B., “Development of a New Method for Evaluating Cyclone Efficiency”, Chemical Engineering and Processing: Process Intensification, Vol. 44, No. 4, pp. 447–451, (2005).