ناپایداری و رزونانس پیزوالکتریکی صفحات S-PFG میرا واقع بر بستر با لایه برشی با استفاده از تئوری بهبود یافته FSDT

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

1 عضو هیات علمی/ دانشگاه تبریز

2 دانشگاه تبریز

چکیده

در این تحقیق ناپایداری دینامیکی و رفتار غیرخطی صفحات تابعی‌ پیزوالکتریک سیگمویدال (S-FGP) با بستر الاستیک خطی تحت تحریکات هارمونیک پیزوالکتریکی در غیاب/حضور میرائی مطالعه ‌شد. بر اساس تئوری تغییرشکل‌های برشی مرتبه اول اصلاح شده (FSDT) و اصل همیلتون، معادلات غیرخطی حاکم استخراج و با لحاظ شش شکل مود ارتعاشی و اعمال روش گالرکین، معادلات حاکم به معادلات غیرخطی ماتیو تبدیل و آنالیز ناپایداری انجام گردید. با بکارگیری روش اغتشاشات، معادلات پاسخ در شرایط پایا استخراج و آنالیز رزونانس پارامتریک تحت تحریکات درون-صفحه‌ای پیزوالکتریک صورت گرفت. نشان داده‌شد که سفتی بستر و میرائی، اثرات عمدهای بر منحنی‌های مشخصه رزونانس می‌گذارند.

کلیدواژه‌ها

موضوعات


[1] Jayakumar, K., Yadav, D., and Rao, B. N., "Moderately Large Deflection Analysis of Simply Supported Piezo-laminated Composite Plates under Uniformly Distributed Transverse Load", International Journal of Non-linear Mechanics, Vol. 49, pp. 137-144, (2013).

 

[2] ‌Zhang, W., Yao, Z. G., and Yao, M. H., "Periodic and Chaotic Dynamics ff Composite Laminated Piezoelectric Rectangular Plate with One-to-Two Internal Resonance", Sci. China. Ser. E-Tech. Sci., Vol. 52, No. 3, pp. 731-742, Mar (2009).

 

[3] Fakhari, V., Ohadi, A., and Yousefian, P., "Nonlinear Free and Forced Vibration Behavior of Functionally Graded Plate with Piezoelectric Layers in Thermal Environment", Composite Structures, Vol. 93, pp. 2310-‌2321, (2011).

 

[4] Wang, Y., Wang, Z., and Zu, L., "Stability of Viscoelastic Rectangular Plate with a Piezoelectric Layer Subjected to Follower Force", Arch. Appl. Mech. Vol. 83, pp. 495-507, (2013).

 

[5] Behjat, B., and Khoshravan, M. R., "Geometrically Nonlinear Static and Free Vibration Analysis of Functionally Graded Piezoelectric Plates", Composite Structures, Vol. 94, pp. 874-882, (2012).

 

[6] Kulikov, G. M., and Plotnikova, S. V., "A New Approach to Three-dimensional Exact Solutions for Functionally Graded Piezoelectric Laminated Plates", Composite Structures, Vol. 106, pp. 33-46, (2013).

 

[7] Rafiee, M., He, X.Q., and Liew, K. M., "Nonlinear Dynamic Stability of Piezoelectric Functionally Graded Carbon Nanotube-reinforced Composite Plates with Initial Geometric Imperfection", International Journal of Non-linear Mechanics, Vol. 59, pp. 37-51, (2014).

 

 [8] Shen, H. S., and Wang, Z. X., "Nonlinear Bending of FGM Plates Subjected to Combined Loading and Resting on Elastic Foundations", Composite Structures, Vol. 92, pp. 2517-2524, (2010).

 

[9] Wang, Z. X., and Shen, H. S., "Nonlinear Dynamic Response of Sandwich Plates with FGM Face Sheets Resting on Elastic Foundations in Thermal Environments", Ocean Engineering, Vol. 57, pp. 99-110, (2013).

 

[10] Shen, H. S., and Wang, Z. X., "Nonlinear Vibration of Hybrid Laminated Plates Resting on Elastic Foundations in Thermal Environments", Applied Mathematical Modelling, Vol. 36, pp. 6275-6290, (2012).

 

[11] Thinh, T. L., Nguyen, M.C., and Ninh, D. G., "Dynamic Stiffness Formulation for Vibration Analysis of Thick Composite Plates Resting on Non-homogenous Foundations", Composite Structures, Vol. 108, pp. 684-695, (2014).

 

[12] Baferani, A. H., and Saidi, A. R., "Effects of In-plane Loads on Vibration of Laminated Thick Rectangular Plates Resting on Elastic Foundation: An Exact Analytical Approach", European Journal of Mechanics A/Solids, Vol. 42, pp. 299-314, (2013).

 

[13] Sobhy, M., "Buckling and Free Vibration of Exponentially Graded Sandwich Plates Resting on Elastic Foundations under Various Boundary Conditions", Composite Structures, Vol. 99, pp. 76–87, (2013).

 

[14] Rezaee, M., and Jahangiri, R., "Static/Dynamic Instability and Nonlinear Vibrations of FG Plates Resting on Elastic Foundation under Parametric Forcing Excitation", Modares Mechanical Engineering, Vol. 14, No. 13, pp. 172-182, (2015).

 

[15] Rezaee, M., and Jahangiri, R., "Nonlinear and Chaotic Vibration and Stability Analysis of an Aero-elastic Piezoelectric FG Plate under Parametric and Primary Excitations", Journal of Sound and Vibration, Vol. 344, pp. 277–296, (2015).

 

[16] Lee, Y. Y., Zhao, X., and Reddy, J. N., "Postbuckling Analysis of Functionally Graded Plates Subject to Compressive and Thermal Loads", Computer Methods in Applied Mechanics and Engineering, Vol. 199, pp. 1645–1653, (2010).

 

[17] Zhu, P., and Liew, K. M., "Free Vibration Analysis of Moderately Thick Functionally Graded Plates by Local Kriging Meshless Method", Composite Structures, Vol. 93, pp. 2925-2944, (2011).

 

[18] Sohn, K. J., and Kim, J. H., "Nonlinear Thermal Flutter of Functionally Graded Panels under a Supersonic Flow", Composite Structures, Vol.  88, pp. 380-387, (2009).

 

[19] Rezaee, M., and Jahangiri, R., "Nonlinear Vibrations of Sandwich FG Plates Resting on Nonlinear Pasternak Foundation under Primary Resonance Excitation using Modified FSDT", Modares Mechanical Engineering, Vol. 14, No. 15, pp. 186-198, (2015).

 

[20] Thai, H. T., Nguyen, T. K., Vo, T.P., and Lee, J., "Analysis of Functionally Graded Sandwich Plates using a New First-order Shear Deformation Theory", European Journal of Mechanics A/Solids, Vol. 45, pp. 211-225, (2014).

 

 [21] Nguyen, T. K., Sab, K., and Bonnet, G., "First-order Shear Deformation Plate Models for Functionally Graded Materials", Composite Structures, Vol. 83, pp. 25–36, (2008).

 

[22] Rashidi, M. M., Shooshtari, A., and Beg, O. A., "Homotopy Perturbation Study of Nonlinear Vibration of von Karman Rectangular Plates", Computers and Structures, Vol. 106(107), pp. 46-55, (2012).

 

[23] Duc, N. D., and Pham, H. C., "Nonlinear Postbuckling of an Eccentrically Stiffened Thin FGM Plate Resting on Elastic Foundations in Thermal Environments", Thin-Walled Structures, Vol. 57, pp. 103-112, (2014).

 

[24] Rolfes, R., and Rohwer, K., "Improved Transverse Shear Stresses in Composite Finite Elements Based on First-order Shear Deformation Theory", International Journal for Numerical Methods in Engineering, Vol. 40, pp. 51-60, (1997).

 

[25] Zhang, W., Yang, J., and Hao, Y., "Chaotic Vibration of an Orthotropic FGM Rectangular Plate Based on Third-order Shear Deformation Theory", Nonlinear Dynamic, Vol. 59, pp. 619-660, (2010).

 

[26] Fu, Y. M., and Ruan, J. L., "Nonlinear Active Control of Damaged Piezoelectric Smart Laminated Plates and Damage Detection", Appl. Math. Mech, Vol. 29, No. 4, pp. 421–436, (2008).

 

[27] Amabili, M., and Farhadi, S., "Shear Deformable Versus Classical Theories for Nonlinear Vibrations of Rectangular Isotropic and Laminated Composite Plates", Journal of Sound and Vibration, Vol. 320, pp. 649–667, (2009).

 

[28] Zhao, X., and Liew, K. M., "Geometrically Nonlinear Analysis of Functionally Graded Plates using the Element-free Kp-Ritz Method", Computer Methods in Applied Mechanics and Engineering, Vol. 198, pp. 2796-2811, (2009).

 

[29] Reddy, J. N., "Mechanics of Laminated Composite Plates and Shells: Theory and Analysis", Second Edition, CRC Press, Boca Raton, FL, (2004).

 

[30] Tran, L.V., Phung-Van, P., Lee, J., Wahab, M.A., and Nguyen-Xuan, H., "Isogeometric Analysis for Nonlinear Thermomechanical Stability of Functionally Graded Plates", Composite Structures, Vol. 140, pp. 655–667, (2016).

 

[31] Praveen, G. N., and Reddy, J. N., "Nonlinear Transient Thermo-elastic Analysis of Functionally Graded Ceramic-Metal Plates", International Journal of Solids and Structures, Vol. 35, No. 33, pp. 4457-4476, (1998).

 

[32] Rafiee, M., Yang, J., and Kitipornchai, S., "Thermal Bifurcation Buckling of Piezoelectric Carbon Nanotube Reinforced Composite Beams", Computers and Mathematics with Applications, Vol. 66, pp. 1147–1160, (2013).

 

[33] Shariyat, M., "Vibration and Dynamic Buckling Control of Imperfect Hybrid FGM Plates with Temperature-dependent Material Properties Subjected to Thermo-electro-mechanical Loading Conditions", Composite Structures, Vol. 88, pp. 240-252, (2009).

 

[34] Ramachandra, L. S., and Kumar Panda, S., "Dynamic Instability of Composite Plates Subjected to Non-uniform In-plane Loads", Journal of Sound and Vibration, Vol. 331, pp. 53-65, (2012).

 

[35] Kumar, R., Ramachandra, L. S., and Banerjee, B., "Dynamic Instability of Damped Composite Skew Plates under Non-uniform In-plane Periodic Loading", International Journal of Mechanical Sciences, Vol. 103, pp. 74–88, (2015).

 

[36] Clough, R. W., and Penzien, J., "Dynamics of Structures", Computers & Structures, Inc., Berkeley, CA, (2003).

 

[37] Nayfeh, A. H., and Mook, D. T.," Nonlinear Oscillations", New York, John Wiley & Sons (1979).

 

[38] Guo, X. Y., Zhang, W., and Yao, M.H., "Nonlinear Dynamics of Angle-ply Composite Laminated Thin Plate with Third-order Shear Deformation", Sci China Tech Sci, Vol. 53, pp. 3612-3622, (2010).