مطالعه عددی و اندازه‌گیری تجربی ضریب نفوذپذیری در محیط متخلخل فیبری با احتساب جزئیات هندسی به منظور بررسی تأثیر پارامترهای هندسی

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

1 مهندسی مکانیک ، دانشگاه علم و صنعت ایران، تهران

2 مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران

چکیده

جزئیات هندسی تخلخل، بر پدیده­های انتقال تأثیرگذار می‌باشد. اما شبیه­سازی کل مسأله با احتساب این جزئیات امکان­پذیر نیست. بنابراین، می‌توان بخشی از هندسه را به منظور مطالعه پارامترهای عملکردی، با در نظر گرفتن جزئیات شبیه­سازی نمود. در مطالعه­ی حاضر، با تصویربرداری میکروسکوپی، پارامترهای ساختاری تعیین و الگوریتم تولید آرایش فیبرها، ارائه شد. با حل عددی معادلات ناویر-استوکس و فرض پیوستگی جریان، تأثیر پارامترهای هندسی بررسی گردید. برای اعتبارسنجی، نفوذپذیری محیط اندازه‌گیری شد. با افزایش کسر حجمی جامد و زاویه­ی بین راستای جریان و محور فیبرها از میزان نفوذپذیری کاسته شد. همچنین با افزایش قطر فیبرها نفوذپذیری محیط افزایش یافت.

کلیدواژه‌ها

موضوعات


[1] Shahamiri, S. A., and Wierzba, I., "Modeling the Reactive Processes within a Catalytic Porous Medium", Applied Mathematical Modelling, Vol. 35, pp. 1915–1925, (2011).

 

[2] Jodeiri, N., Wu, L., Mmbaga, J., Hayes, R.E., and Wanke, S.E., "Catalytic Combustion of VOC in a Counter-diffusive Reactor", Catalysis Today, Vol. 155, pp. 147–153, (2010).

 

[3] Jodeiri, N., Mmbaga, J.P., Wu, L., Wanke, S.E., and Hayes, R.E., "Modelling a Counter-Diffusive Reactor for Methane Combustion", Computers and Chemical Engineering, Vol. 39, pp. 47–56, (2012).

 

[4] Hosseinalipour, S.M., Madadelahi, M., Behravan, A., Namazi, M.M., and Ghadiri, Kh., "Computer Simulation of Performance of Flameless Catalytic Burners", Jokull Journal, Vol. 63, No. 10, (2013).

 

[5] Hosseinalipour, S.M., Namazi, M.M., Behravan, A., Ghadiri, Kh., and Madadelahi, M., "Preparation and Performance Testing of the Radiative Catalytic Pad for Flameless Combustion of Natural  Gas  in  Different  Climate  Conditions",  Modarres  Mechanical  Engineering, Vol. 14, No. 9, pp. 57-64, (2014).

 

[6] Hosseinalipour, S.M., Behravan, A., Namazi, M.M., Madaelahi, M., and Baghsheikhi, M., "Experimental and Numerical Analysis of Heating the Fluid Passing Through the Tube using Radiative Catalytic Heaters", 15th International Conference on Fluid Dynamics, Bandar Abbas, Iran, (2013).

 

[7] Hosseinalipour, S.M., Behravan, A., Namazi, M.M., Madaelahi, M., and Parvari, M., "2D Numerical Analysis of Radiative Catalytic Panel by using Finite Element Method", 15th International Conference on Fluid Dynamics, Bandar Abbas, Iran, (2013).

 

[8] Hosseinalipour, S.M., Behravan, A., Namazi, M.M., Ghadiri, Kh., Madaelahi, M., and Parvari, M., "Identify Components and Experimental Study of the Radiative Catalytic Panels", 1st  National Conference and Exhibition on Environment, Energy & Clean Industry, Tehran, Iran, (2013).

 

[9] Hosseinalipour, S.M., Namazi, M.M., Behravan, A., Ghadiri, Kh., and Madadelahi, M., "An Introduction to the Structure and Experimental Study of Commercial Radiative Catalytic Panels", 5th National Conference on CFD Applications in Chemical & Petroleum Industries, Tehran, Iran, (2014).

 

[10] Hosseinalipour, S.M., Madaelahi,  M., Behravan, A., and Namazi, M.M.,  "3D Simulation of Radiative Catalytic Panel Assuming Equal Sherwood and Nusselt Numbers on Panel Surface", 5th National Conference on Fuel and Combustion, Tehran, Iran, (2013).

 

[11] Hosseinalipour, S.M., Behravan, A., Namazi, M.M., and Ghadiri, Kh., "Experimental Study of Radiative Catalytic Panel in Different Climate Conditions", 22th International Conference ISME, Ahvaz, Iran, (2014).

 

[12] Clague, D.S., and Phillips, R.J., "A Numerical Calculation of the Hydraulic Permeability of Three-dimensional Disordered Fibrous Media", Physics of Fluids, Vol. 9, Issue. 6, pp.  1562-1572, (1997).

 

[13] Faessel, M., Delisee, C., Bos, F., and Castera, P., "3D Modelling of Random Cellulosic Fibrous Networks Based on X-Ray Tomography and Image Analysis", Composites Science and Technology, Vol. 65, pp. 131-140, (2005).

 

[14] Wang, Q., Maze, B., Vahedi Tafreshi, H., and Pourdeyhimi, B., "Simulating Through-plane Permeability of Fibrous Materials with Different Fiber Lengths", Modelling and Simulation in Materials Science and Engineering, Vol. 15, pp. 855–868, (2007).

 

[15] Huang, X., Wang, Q., Zhou, W., Deng, D., Zhao, Y., Wen, D., and Li, J., "Morphology and Transport Properties of Fibrous Porous Media", Powder Technology, Vol. 283, pp. 618–626, (2015).

 

[16] Arambakam, R., Vahedi Tafreshi,  H., and Pourdeyhimi, B., "Modeling Performance of Multi-component Fibrous Insulations Against Conductive and Radiative Heat Transfer", International Journal of Heat and Mass Transfer, Vol. 71, pp. 341–348, (2014).

 

[17] Bejan, A., "Convection Heat Transfer", 4th   Edition, Wiley, New Jersey, (2013).

 

[18] Wiggins, E.J., Campbell, W.B., and Maass, O., "Determination of the Specific Surface of Fibrous Materials", Can. J. Res., No. 17B, pp. 318–324, (1939).

[19] Brown Jr., J.C., "Determination of the Exposed Specific Surface of Pulp Fibers from Air Permeability Measurements", TAPPI, No. 33, pp. 130–137, (1950).

 

[20] Stenzel, K.H., Rubin, A.L., Yamayoshi, W., Miyata, T., Suzucki, T., Sohde, T., and Nishizawa, M., "Optimization of Collagen Dialysis Membranes", Trans. Amer. Soc. Artif. Int. Organs, No. 17, pp. 293–299, (1971).

 

[21] Viswanadham, R., Agrawal, D.C., and Kramer, E.J., "Water Transport through Reconstructed Collagen Hollow-fiber Membranes", J. Appl. Polym. Sci., No. 22, pp. 1655–1663, (1978).

 

[22] Davies, C.N., "The Separation of Airborne Dust and Particles", Proceedings of Institute of Mechanical Engineers B1, London, pp. 185–213, (1952).

 

[23] Kuwabara, S., "The Forces Experienced by Randomly Distributed Parallel Circular Cylinders of Spheres in a Viscous Flow at Small Reynolds Number", Journal of the Physical Society of Japan, Vol. 14, No. 4, pp. 527–532, (1959).

 

[24] Spielman, L., Goren, S.L., "Model for Predicting Pressure Drop and Filtration Efficiency in Fibrous Media", Environmental Science and Technology, Vol. 2, pp. 279–287, (1968).

 

[25] Ogorodnikov, B.I., "Pressure-drop Across FP Fiber Filters under Gas Slip-flow and in Transition Regime", Colloid Journal of the USSR, Vol. 38, No. 1, pp. 168–172, (1976).

 

[26] Sangani, A. S., and Acrivos, A., "Slow Flow Past Periodic Arrays of Cylinders with Application to Heat Transfer", Int. J. Multiphase Flow, No. 8, pp. 193-206, (1982).

 [27] Drummond, J. E., and Tahir, M. I., "Laminar Viscous Flow through Regular Arrays of Parallel Solid Cylinders", Int. J. Multiphase Flow, No. 10, pp. 515-540, (1983).

 

[28] Jackson, G. W., and James, D. F., "The Permeability of Fibrous Media", Can. J. Chem. Eng., No. 64, pp. 364-374, (1986).

 

[29] Brown, R.C., "Air Filtration: An Integrated Approach to the Theory and Applications of Fibrous Filters", Pergamon Press, Oxford, (1993).

 

[30] Hosseini, S.A., and Vahedi Tafreshi, H., "Modeling Permeability of 3-D Nanofiber Media in Slip Flow Regime", Chemical Engineering Science, Vol. 65, pp. 2249–2254, (2010).

 

[31] Jaganathan, S., Vahedi Tafreshi, H., and Pourdeyhimi, B., "A Realistic Approach for Modeling Permeability of Fibrous Media: 3-D Imaging Coupled with CFD Simulation", Chemical Engineering Science, Vol. 63, pp. 244 – 252, (2008).

 

[32] Tomadakis, M., and Robertson, J., "Viscous Permeability of Random Fiber Structures: Comparison of Electrical and Diffusional Estimates with Experimental and Analytical Results", Journal of Composite Materials, Vol. 39, Issue. 2, pp. 139-163, (2005).

 

[33] Stylianopoulos, T., Yeckel, A., Derby, J., Luo, X., Shephard, M., Sander, E., and Barocas, V., "Permeability Calculations in Three-dimensional Isotropic and Oriented Fiber Networks", Physics of Fluids, Vol. 20, 123601, (2008).

 

[34] Brun, E., Vicente, J., Topin, F., and Occelli, R., "Microstructure and Transport Properties of Cellular Materials: Representative Volume Element", Adv. Eng. Mater. No. 11, pp. 805–810, (2009).

 

[35] Clague, D.S., and Phillips, R.J., "A Numerical Calculation of the Hydraulic Permeability of Three Dimensional Disordered Fibrous Media", Physics of Fluids, No. 9, pp. 1562- 1572, (1997).

 

[36] Maze, B., Vahedi Tafreshi, H., Wang, Q., and Pourdeyhimi, B., "A Simulation of Unsteady-state Filtration via Nanofiber Media at Reduced Operating Pressures", Aerosol Science, Vol. 38, pp. 550–571, (2007).

 

[37] Beavers, G. S., and Sparrow, E. M., "Non-Darcy Flow through Fibrous Porous Media", Journal of Applied Mechanics, Vol. 36, Issue. 4, pp. 711-714, (1969).

 

[38] Daryabeigi, K., Cunnington, G., Miller, S., and Knutson, J., "Combined Heat Transfer in High-porosity High Temperature Fibrous Insulations: Theory and Experimental Validation", American Institute of Aeronautics and Astronautics, (2010).

 

[39] Deutschmann, O., "Computational Fluid Dynamics Simulation of Catalytic Reactors", Chapter 6 of Handbook of Heterogeneous Catalysis, Wiley, Weinheim, Germany, (2008).