تحلیل ترموالاستیک استوانه جدارضخیم هدفمند با خواص متغیر با دما به کمک روش اغتشاش

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

1 استادیار دانشکده مهندسی مکانیک کاشان

2 دانشجوی دانشگاه کاشان

چکیده

در این پژوهش تحلیل ترموالاستیک استوانه جدارضخیم با خواص وابسته به دما بررسی می شود. کلیه خواص جز ضریب پواسونتابعی از دما و شعاع می باشد. با فرضیات مذکور، معادله دیفرانسیل غیرخطی برای توزیع انتقال حرارت در مختصات استوانه‎ای حاصل می‌گردد. حل این معادله به روش اغتشاشات سنتی، توزیع انتقال حرارت در استوانه را به‌صورت تقریبی- تحلیلی منتجه می‌شود. معادله دیفرانسیل حاکم بر مسئله، با در نظر گرفتن روابط کرنش – تغییر مکان، تنش – کرنش و تعادل به همراه توزیع انتقال حرارت قبلی حاصل می‌گردد. با حل این معادله به کمک شرایط مرزی مکانیکی، جابجایی شعاعی حاصل می‌گردد.

کلیدواژه‌ها

موضوعات


[1] Jamian, S., "Application of Functionally Graded Materials for Severe Plastic Deformation and Smart Materials", Ph.D. Thesis, Nagoya Institute of Technology, Nagoya, Japan, (2012).

 

 [2] احمدی نوخندان، مصطفی، جبارزاده گنجه، مهرداد، "تحلیل غیرخطی ترموالاستیک دیسک‌های دوار توخالی FGM با استفاده از تئوری‌های تغییرشکل برشی مرتبه اول و سوم"، مجله‌ی مهندسی مکانیک مدرس، دوره‌ی 14، شماره‌ی 1، صفحه‌ی 175 تا 188، (2014).

[3] Nino, A., "Recent Development Status of Functionally Gradient Materials", Thin-walled Structures, Vol. 30, pp. 699-703, (1990).

 

[4] Tutuncu, N., and Ozturk, M., "Exact Solution for Stress in Functionally Graded Pressure Vessels", Composites Part B: Engineering, Vol. 32, pp. 683-686, (2001).

 

[5] Tutuncu, N., "Stresses in Thick-walled FGM Cylinders with Exponentially-varying Properties", Engineering Structures, Vol. 29, pp. 2032-2035, (2007).

 

[6] Jabbari, M., Sohrabpour, S., and Eslami, M.R., "Mechanical and Thermal Stresses in FGM Hollow Cylinder due to Radially Symmetric Loads", International Journal of Pressure Vessels and Piping, Vol. 79, pp. 493-497, (2002).

 

[7] Jabbari, M., Sohrabpour, S., and Eslami, M.R., "General Solution for Mechanical and Thermal Stresses in a Functionally Graded Hollow Cylinder due to Non-axisymmetric  Steady-State  Loads", Journal of Applied Mechanics, Vol. 70, pp. 111-118, (2003).

 

[8] Tutuncu, N., and Temel, B., "A Novel Approach to Stress Analysis of Pressurized FGM Cylinders, Disks and Spheres", Composite Structures, Vol. 19, pp. 385-390, (2009).

 

[9] Liew, K., Kitipornchai, S., Zhang, X., and Lim, C., "Analysis of the Thermal Stress Behavior of Functionally Graded Hollow Circular Cylinder", International Journal of Solids and Structures, Vol. 40, pp. 2355-2380, (2003).

 

[10] Tarn, J.Q., and Wang, Y.M., "End Effects of Heat Conduction in Circular Cylinders of Functionally Graded Materials and Laminated Composites", International Journal of Heat and Mass Transfer, Vol. 47, pp. 5741-5747, (2004).

 

[11] Chen, B., and Tong, L., "Thermomechanical Coupled Sensitivity Analysis and Design Optimization of Functionally Graded Materials", Computer Methods in Applied Mechanics and Engineering, Vol. 194, pp. 1891-1911, (2005).

 

[12] Shao, Z., "Mechanical and Thermal Stresses of a Functionally Graded Circular Hollow Cylinder with Finite Length", International Journal of Pressure Vessels Piping, Vol. 82, pp. 155-163, (2005).

 

[13] Arefi, M., "Nonlinear Thermoelastic Analysis of Thick-walled Functionally Graded Piezoelectric Cylinder ", Acta Mechanica, Vol. 224, pp. 2771-2783, (2013).

 

[14] Oral A., and Anlas G., "Effects of Radially Varying Moduli on Stress Distribution of Nonhomogeneous Anisotropic Cylindrical Bodies", International Journal of Solids Structures, Vol. 42, pp. 5568-5588, (2005).

 

[15] Ruhi, M., Angoshtar, A., and Naghdabadi, R., "Thermoelastic Analysis of Thick Walled Finite-length Cylinders for Functionally Graded Materials", Journal of Thermal Stresses, Vol. 28, pp. 391-408, (2005).

 

[16] Tokovyy, Y.V., and Ma, C.C., "Analysis of 2D Non-axisymmetric Elasticity and Thermoelasticity Problems for Radially Inhomogeneous Hollow Cylinders", Journal of Engineering Mathematics, Vol. 61, No. 2, pp. 171-184, (2008).

[17] Ghorbanpour Arani, A., Loghman, A., Abdollahitaheri, A., and  Atabakhshian V., "Electro Thermomechanical Behavior of a Radially Polarized Rotating Functionally Graded Piezoelectric Cylinder", Journal of Mechanics of Material and Structures, Vol. 6, pp. 869-882, (2011).

 

[18] Loghman, A., and Parsa, H., "Exact Solution for Magneto-thermo-elastic Behaviour of Double-walled Cylinder Made of an Inner FGM and an Outer Homogeneous Layer", International Journal of Mechanical Sciences, Vol. 88, pp. 93-99, (2014).

 

[19] Arefi, M., "Nonlinear Thermal Analysis of a Functionally Graded Hollow Cylinder with Temperature-variable Material Properties", Journal of Applied Mechanics and Technical Physics, Vol. 56, pp. 267-273, (2015).

 

[20] سهمانی سعید، محسن بهرامی، محمدی اقدم محمد، "رفتارکمانش و پس کمانش نانوپوسته‌های استونه‌ای با درنظر  گرفتن اثر تنش سطحی تحت بار محوری به همراه شبیه سازی دینامیک مولکولی"، رساله دکتری، دانشکده مهندسی مکانیک، دانشگاه صنعتی امیرکبیر، (1394).

 

[21] Wazwaz, A.M., "Partial Differential Equations and Solitary Waves Theory", Nonlinear Physical Science, Springer-Verlag Berlin Heidelberg, (2009).

 

[22] Sadighi, A., and Ganji, D.D., "Exact Solutions of Laplace Equation by Homotopy-Perturbation and Adomian Decomposition Methods", Physics Letters A, Vol. 367, Issues. 1-2, pp. 83-87, (2007).

 

[23] Vatankhah, R., Kahrobaiyan, M.H., Alasty, A., and Ahmadian, M.T., "Nonlinear Forced Vibration of Strain Gradient Microbeams", Applied Mathematical Modelling, Vol. 37, pp. 8363-8382, (2013).

 

[24] Ugural, A.C., and Fenster, S.K., "Advanced Strength and Applied Elasticity", New Jersey Institute of Thechnology, Prentice Hall; 4 Edition, (2003).

 

[25] Alibeigloo, A., Kani, A.M., and Pashaei M.H., "Elasticity Solution for the Free Vibration Analysis of Functionally Graded Cylindrical Shell Bonded to Thin Piezoelectric Layers", International Journal of Pressure Vessels and Piping, Vol. 89, pp. 98-111, (2012).

 

[26] Loghman, A., Aleayoub, S.M.A., and Hasani Sadi, M., "Time-dependent Magneto- thermoelastic Creep Modeling of FGM Spheres using Method of Successive Elastic Solution", Applied Mathematical Modelling, Vol. 36, pp. 836-845, (2012).