تاثیر مصالح بر مصرف انرژی، کربن تولیدی و آسایش حرارتی در ساختمان اداری در اقلیمهای گرم و مرطوب، گرم و خشک و سرد ایران

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشکده هنر و معماری، دانشگاه شیراز

2 دانشکده هنر و معماری، دانشگاه شیراز، شیراز ، ایران

3 دانشکده مهندسی مکانیک، دانشگاه شیراز

چکیده

یکی از عوامل مهم موثر در تعیین بار سرمایش و گرمایش ساختمان، ویژگی­های حرارتی مصالح است. پایداری محیطی ساختمان­ها نیز متاثر از مصرف انرژی و انتشارات مضر زیست محیطی مصالح می­باشد. لذا در انتخاب مصالح علاوه بر ویژگی­های حرارتی، چرخه حیات مصالح، انرژی و کربن نهفته نیز باید مدنظر قرار گیرد. هدف از پژوهش حاضر بررسی تاثیر مصالح مختلف بر عملکرد حرارتی و کارایی انرژی در ساختمان­های اداری است. بدین منظور برای یک ساختمان نمونه، مصالح با ویژگی­های حرارتی مختلف در 18 حالت برای سقف، کف، دیوارهای بیرونی و داخلی ساختمان درنظر گرفته شده و شبیه سازی حرارتی در سه شهر بوشهر، شیراز و تبریز برای یک سال نمونه با استفاده از نرم افزار دیزاین بیلدر انجام شده است. براساس نتایج بهترین و بدترین ترکیب­های مصالح از منظر میزان انرژی مصرفی و کربن تولیدی، بدون وابستگی به اقلیم در هر سه شهر یکسان بوده اما با حالات عدم آسایش متناظر نیست. این مساله به دلیل تفاوت بار سرمایش و گرمایش در اقلیم­های مختلف است. تفاوت بهترین و بدترین حالت­ها در مصرف انرژی 24 تا 46 درصد، درکربن تولیدی 25 تا 43 درصد و در ساعات عدم آسایش، بسته به نوع اقلیم 6 تا 134 درصد است.

کلیدواژه‌ها

موضوعات


[1]  “LEED U.S. Green Building Council”, [Online]. Available: http://www.usgbc.org/leed. (2016).
 
[2] Yüksek, Í., “The Evaluation of Building Materials in Terms of Energy Efficiency”, Period. Polytech. Civ. Eng., Vol. 59, No. 1, pp. 45–58, (2015).
 
[3]  EN, B. S., “15804: 2012: Sustainability of Construction Works. Environmental Poduct Declarations. Core Rules for the Product Category of Construction Products”, Brussels CEN, (2012).
 
[4]  EN, B. S.,“15978: 2011,” Sustain. Constr. Work. Environ. Perform. Build. Method, (2011).
 
[5]  Cansino, J. M., Pablo-Romero, M. del P., Román, R., and Yñiguez, R., “Promoting Renewable Energy Sources for Heating and Cooling in EU-27 Countries”, Energy Policy, Vol. 39, No. 6, pp. 3803–3812, (2011).
 
[6]  Miller, A. J., “Energy Implications of the Transportation of Building Materials”, Proc. Mater. Technol. Sustain. Constr. Gävle, Sweden, pp. 803–810, (1998).
 
 [7] Hassan, M. A., Guirguis, N. M., Ibrahim, A., and Fahim, A. A., “Effect of Building Material and Wall Construction on the Energy Consumption”, Cairo: Housing and Building National Research Center, Industrial Education Faculty, pp. 1–7, (2011).
 
[8]  Paper, C., and Texas, N. H., “The Effect of Shading Design and Materials on Building Energy Demand”, in 5th International/11th Construction Specialty Conference,  Vancouver, British Columbia, (2015).
 [9] Al-sanea, S. A., and Zedan, M. F., “Improving Thermal Performance of Building Walls by Optimizing Insulation Layer Distribution and Thickness for Same Thermal Mass”, Appl. Energy, Vol. 88, No. 9, pp. 3113–3124, (2011).
 
[10]  Kontoleon, K. J., Theodosiou, T. G., and Tsikaloudaki, K. G., “The Influence of Concrete Density and Conductivity on Walls Thermal Inertia Parameters under a Variety of Masonry and Insulation Placements”, Appl. Energy, Vol. 112, pp. 325–337, (2013).
 
[11]  Bond, D. E. M., Clark, W. W., and Kimber, M., “Configuring Wall Layers for Improved Insulation Performance”, Appl. Energy, Vol. 112, pp. 235–245, (2013).
 
[12]  Axaopoulos, I., Axaopoulos, P., and Gelegenis, J., “Optimum Insulation Thickness for External Walls on Different Orientations Considering the Speed and Direction of the Wind”, Appl. Energy, Vol. 117, pp. 167–175, (2014).
 
[13]  Lehmann, B., Wakili, K. G., Frank, T., Collado, B. V., and Tanner, C., “Effects of Individual Climatic Parameters on the Infrared Thermography of Buildings”, Appl. Energy, Vol. 110, pp. 29–43, (2013).
 
[14]  Stazi, F., Tomassoni, E., Bonfigli, C., and Di, C., “Energy, Comfort and Environmental Assessment of Different Building Envelope Techniques in a Mediterranean Climate with A Hot Dry Summer”, Appl. Energy, Vol. 134, pp. 176–196, (2014).
 
[15] Zhang, Y., Chen, Q., Zhang, Y., and Wang, X., “Exploring Buildings  Secrets : The Ideal Thermophysical Properties of a Building’s Wall for Energy Conservation Adiabatic Surface”, Int. J. Heat Mass Transf. Vol. 65, pp. 265–273, (2013).
 
[16] Zhang, Y., Zhang, Y., Wang, X., and Chen, Q., “Ideal Thermal Conductivity of a Passive Building Wall : Determination Method and Understanding”, Appl. Energy, Vol. 112, pp. 967–974, (2013).
 
[17] Long, L.,  and Ye, H., “Effects of Thermophysical Properties of Wall Materials on Energy Performance in an Active Building”, Energy Procedia, Vol. 75, pp. 1850–1855, (2015).
 
[18] Long, L., and Ye, H., “The Roles of Thermal Insulation and Heat Storage in the Energy Performance of the Wall Materials : A Simulation Study”, Nat. Publ. Gr., No. October 2015, pp. 1–9, (2016).
 
[19] Stazi, F., Vegliò, A., Di, C., and Munafò, P., “Experimental Comparison Between 3 Different Traditional Wall Constructions and Dynamic Simulations to Identify Optimal Thermal Insulation Strategies”, Energy Build., Vol. 60, pp. 429–441, (2013).
 
[20] Wegerer, P., Nathanael, J., and Bednar, T., “Measuring the Hygrothermal Performance of an Interior Insulation Made of Woodfibre Boards”, Energy Procedia, Vol. 78, pp. 1478–1483, (2015).
 
[21] Aldawi, F., Alam, F.,  Khan, I., and Alghamdi, M., “Effect of Climates and Building Materials on House Wall Thermal Performance”, Procedia Eng., Vol. 56, pp. 661–666, (2013).
[22] Ferna, I., Cabeza, L. F., Castell, A., Medrano, M., Martorell, I., Pérez, G., and Fernández, I., “Experimental Study on the Performance of Insulation Materials in Mediterranean Construction”, Energy Build., Vol. 42, No. 5, pp. 630–636, (2010).
 
[23] Lindberg, R., Binamu, A., and Teikari, M., “Five-year Data of Measured Weather, Energy Consumption, and Time-dependent Temperature Variations Within Different Exterior Wall Structures”, Energy Build., Vol. 36, pp. 495–501, (2004).
 
[24] Fadzil, M. A., Norliyati, M. A., Hilmi, M. A., Ridzuan, A. R., Ibrahim, M. H. W., and Assrul, R. Z., “Energy Consumption of Insulated Material using Thermal Effect Analysis”, in MATEC Web of Conferences, Vol. 103, pp. 8017, (2017).
 
[25] Cern, R., “Exterior Thermal Insulation Systems for AAC Building Envelopes : Computational Analysis Aimed at Increasing Service Life”, Energy Build, Vol. 47, pp. 84–90, (2012).
 
[26] Heck, M., Herkel, S., Prager, C., and Ko, M., “The Influence of the IR Reflection of Painted Facades on the Energy Balance of a Building”, Energy Build, Vol. 38, pp. 1369–1379, (2006)
 
[27]  محمد، ش.، “مطالعه رفتار حرارتی مصالح رایج در ساخت دیوار مطالعه موردی: ساختمان های مسکونی شهر تهران”، نشریه هنرهای زیبا، شماره 18، ص 78-69،  (1392).
 
[28]  ذوالفقاری, ع.، سعادتی نسب,  م. ، و نوروزی جاجرم, ا. ، “ارزیابی میزان تاثیر نمای خارجی ساختمان بر مصرف انرژی سالانه در اقلیم های مختلف ایران”، نشریه انرژی ایران، شماره 4، ص 80-69 (1393).
 
[29] Nasrollahi, F., "Office Buildings Energy Efficient: Energy Efficiency with the Architectural Design, Berlin University, (2015).