آنالیز اگزرژی و تحلیل زیست محیطی یک سیستم ترکیبی تولید همزمان توان و حرارت تغذیه شده با پوسته برنج

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه ارومیه، ارومیه، ایران

2 استادیار، مهندسی مکانیک، دانشگاه ارومیه، ارومیه

چکیده

در تحقیق حاضر، یک سیستم تولید همزمان توان و حرارت متشکل از پیل­سوختی اکسید جامد و گازساز زیست توده معرفی شده است. در این سیستم از لوله­های حرارتی برای انتقال حرارت از محفظه پس­سوز به بستر گازساز استفاده شد. نتایج حاکی از آن است که زمانی­که دمای پیل سوختی افزایش یابد، بازده سیستم افزایش و بازگشت ناپذیری­ها کاهش می­یابد. در چگالی جریان A/m4000  و دمای خروجی پیل­سوختی °C850، بازده­های گاز سرد گازسازی زیست­توده و اگزرژی به ترتیب 74/91% و 79/45 % بدست می­آید. همچنین هیدروژن 35% از ترکیب گاز سنتز خروجی از گازساز را به خود اختصاص می­دهد

کلیدواژه‌ها

موضوعات


] Hoel, M., and Kverndokk, S., “Depletion of Fossil Fuels and the Impacts of Global Warming”, Resource and Energy Economics, Vol. 18, pp. 115-136, (1996).
 
[2] Demirbaş, A., “Global Renewable Energy Resources”, Energy Sources, Vol. 28, pp. 779-792, (2006).
 
[3] Bridgwater, T., “Biomass for Energy”, Journal of the Science of Food and Agriculture, Vol. 86, pp. 1755-1768, (2006).
 
[4] Dicks, A., and Rand, D.A.J., “Fuel Cell Systems Explained”, Wiley, Brisbane, Australia (2018).
 
[5] Stambouli, A.B., and Traversa, E., “Solid Oxide Fuel Cells (SOFCs): A Review of an Environmentally Clean and Efficient Source of Energy”, Renewable and Sustainable Energy Reviews, Vol. 6, pp. 433-455, (2002).
 
[6] Yau, Y.H., and Ahmadzadehtalatapeh, M., “A Review on the Application of Horizontal Heat Pipe Heat Exchangers in Air Conditioning Systems in the Tropics”, Applied Thermal Engineering, Vol. 30, pp. 77-84, (2010).
 
[7] Zohuri, B., “Heat Pipe Design and Technology: Modern Applications for Practical Thermal Management”, New York, Springer, (2016).
 
[8] Pirkandi, J., Ghassemi, M., and Hamedi,  M.H., “Performance Coparison of Direct and Indirect Hybrid Systems of Gas Turbine and Solid Oxied Fuel Cell from Thermodynamic and Exergy Viewpoints”, Modares Mechanical Engineering, Vol. 12, pp. 117-133, (2012).
[9] Sajadi, S. Z., Pirkandi, J., and Jahromi, M., “Electrochemical Performance Investigation of Solid Oxide Fuel Cell in Micro-gas Turbine Hybrid Systems to Determine Optimum Fuel Utilization Factor”, Modares Mechanical Engineering, Vol. 16, pp. 300-310, (2016).
 
[10] Pirkandi, J., and Ghassemi, M., “Thermo-economic Modeling and Analysis of a Combined Fuel Cell and Micro Gas Turbine Power Plant Cycle”, Modares Mechanical Engineering, Vol. 13, pp. 207-222, (2014).
 
[11] Pourfatemi, S. M., and Ahmadi, R., “Thermo-economic Analysis with Reliability Consideration of a Hybrid System of Gas Turbine, SOFC and Multiple Effect Desalination”, Modares Mechanical Engineering, Vol. 17, pp. 321-332, (2017).
 
[12] Ranjbar, F., Chitsaz, A., Mahmoudi, S.M.S., Khalilarya, S., and Rosen, M.A., “Energy and Exergy Assessments of a Novel Trigeneration System Based on a Solid Oxide Fuel Cell”, Energy Conversion and Management, Vol. 87, pp. 318-327, (2014).
 
[13] Gholamian, E., Zare, V., and Mousavi, S.M., “Integration of Biomass Gasification with a Solid Oxide Fuel Cell in a Combined Cooling, Heating and Power System: A Thermodynamic and Environmental Analysis”, International Journal of Hydrogen Energy, Vol. 41, No. 44, pp. 20396-20406, (2016).
 
[14] Gadsbøll, R.Ø., Thomsen, J., Bang-Møller, C., Ahrenfeldt, J., and Henriksen, U.B., “Solid Oxide Fuel Cells Powered by Biomass Gasification for High Efficiency Power Generation”, Energy, Vol. 131, pp. 198-206, (2017).
 
[15] Rokni, M., “Biomass Gasification Integrated with a Solid Oxide Fuel Cell and Stirling Engine”, Energy, Vol. 77, pp. 6-18, (2014).
 
[16] Borji, M., Atashkari, K., Ghorbani, S., and Nariman-Zadeh, N., “Model-based Evaluation of an Integrated Autothermal Biomass Gasification and Solid Oxide Fuel Cell Combined Heat and Power System”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 231, pp. 672-694, (2017).
 
[17] Bang-Møller, C., and Rokni, M., “Thermodynamic Performance Study of Biomass Gasification, Solid Oxide Fuel Cell and Micro Gas Turbine Hybrid Systems”, Energy Conversion and Management, Vol. 51, pp. 2330-2339, (2010).
 
[18] Mojaver, P., Khalilarya, S., and Chitsaz, A., “The Thermodynamic Analysis and Pptimization of a Novel Integrated Solid Oxide Fuel Cell System with Biomass Gasification and Heat Pipes”, Modares Mechanical Engineering, Vol. 18, pp. 339-350, (2018).
 
[19] Kotas, T.J., “The Exergy Method of Thermal Plant Aanalysis”, University of London, Elsevier, (2013).
 
[20] Dincer, I., and Rosen, M.A., “Exergy: Energy, Environment and Sustainable Development”, Oxford OX5 IGB, UK, Newnes, (2012).
[21] Szargut, J., Morris, D.R., and Stewa`rd, F.R., “Exergy Analysis of Thermal, Chemical, and Metallurgical Processes”, U.S. Department of Energy Office of Scientific and Technical Information, (1987).
 
[22] Loha, C., Chatterjee, P.K., and Chattopadhyay, H., “Performance of Fluidized Bed Steam Gasification of Biomass–modeling and Experiment”, Energy Conversion and Management, Vol. 52, pp. 1583-1588, (2011).
 
[23] Ptasinski, K.J., Prins, M.J., and Pierik, A., “Exergetic Evaluation of Biomass Gasification”, Energy, Vol. 32, pp. 568-574, (2007).
 
[24] Pellegrini, L.F., and de Oliveira Jr, S., “Exergy Analysis of Sugarcane Bagasse Gasification”, Energy, Vol. 32, pp. 314-327, (2007).
 
[25] Styrylska, T., and Szargut, J., “Approximate Determination of Fuel Exergy (Approximate Determination of Chemical Exergy of Fuels with Known Absolute Entropy)”, Brennstoff-Wärme-Kraft, Vol. 16, pp. 589-596, (1964).
 
[26] Datta, A., Ganguly, R., and Sarkar, L., “Energy and Exergy Analyses of an Externally Fired Gas Turbine (EFGT) Cycle Integrated with Biomass Gasifier for Distributed Power Generation”, Energy, Vol. 35, pp. 341-350, (2010).
 
[27] Mojaver, P., Khalilarya, S., and Chitsaz, A., “Performance Assessment of a Combined Heat and Power System: A Novel Integrated Biomass Gasification, Solid Oxide Fuel Cell and High-temperature Sodium Heat Pipe System Part I: Thermodynamic Analysis”, Energy Conversion and Management, Vol. 171, pp. 287-297, (2018).
 
[28] Tao, G., Armstrong, T., and Virkar, A., "Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC) Research and Development Activities at MSRI, In  Nineteenth annual ACERC&ICES Conference, Utah, February, (2005).