بررسی عددی جریان و انتقال حرارت جابجایی ترکیبی نانوسیال نیوتنی و غیرنیوتی در محفظه مربعی باز حاوی چشمه حرارتی

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

1 گروه مهندسی مکانیک، دانشگاه آزاد اسلامی واحد بافق، بافق، ایران

2 استادیار، دکتری تخصصی تبدیل انرژی، گروه مهندسی مکانیک، واحد یزد، دانشگاه آزاد اسلامی، یزد، ایران

چکیده

در تحقیق حاضر انتقال حرارت جابجایی ترکیبی نانوسیال نیوتنی و غیر نیوتنی در یک محفظه در حال تهویه با حضور مانع داخلی به صورت دوفازی مورد برسی قرارگرفته است و نانو سیالات آب- اکسید آلومنیوم و آب- اکسید مس به عنوان سیال عامل در نظر گرفته شده است. معادلات حاکم با استفاده از روش عددی حجم محدود گسسته سازی و با استفاده از روش دوفازی اویلری- اویلری حل شده اند. در این پژوهش چشمه حرارتی دارای شارحرارتی ثابت وتمام دیواره های محفظه از نظر حرارتی نیز عایق می باشند. نتایج حاصل از این تحقیق نشان می‌دهند که در رینولدز 100 و گراشف 105، ناسلت متوسط با حضور نانو ذره اکسید مس ،۶۱/٢۴ درصد نسبت به آب خالص افزایش و همچنین با افزایش کسرحجمی نانوذرات از02/0به 05/0 ناسلت متوسط 11/2 درصد افزایش می‌یابد.

کلیدواژه‌ها

موضوعات


 
[1] Rudyak, V.Y., and Minakov, A., “Modern of Nanofluid Flows Problems, Methods, Results”, International Conference on the Methods of Aerophysical Research (ICMAR), Novosibirsk, Russia, pp. 1-8, (2018).
 
[2] Esfe, M.H., Esfandeh, S., Afrand, M., Rejvani, M., and Rostamian, S.H., “Experimental Evaluation, New Correlation Proposing and ANN Modeling of Thermal Properties of EG Based Hybrid Nanofluid Containing ZnO-DWCNT Nanoparticles for Internal Combustion Engines Applications”, Applied Thermal Engineering, Vol. 133, pp. 452-463, (2018).
 
[3] Esfe, M.H., Esfandeh, S., and Rejvani, M., “Modeling of Thermal Conductivity of MWCNT-SiO2 (30:70%)/EG Hybrid Nanofluid, Sensitivity Analyzing and Cost Performance for Industrial Applications”, Journal of Thermal Analysis and Calorimetry, Vol. 131, No. 2, pp. 1437-1447, (2018).
 
[4] Alirezaie, A., Hajmohammad, M.H., Ahangar, M.R.H., and Esfe, M.H., “Price-performance Evaluation of Thermal Conductivity Enhancement of Nanofluids with Different Particle Sizes”, Applied Thermal Engineering, Vol. 128, pp. 373-380, (2018).
 
[5] Esfe, M.H., Nadooshan, A.A., Arshi, A., and Alirezaie, A., “Convective Heat Transfer and Pressure Drop of Aqua Based TiO2 Nanofluids at Different Diameters of Nanoparticles: Data Analysis and Modeling with Artificial Neural Network”, Physica E: Low-dimensional Systems and Nanostructures, Vol. 97, pp. 155-161, (2018).
 
[6] Afrand, M., Rostami, S., Akbari, M., Wongwises, S., Esfe, M.H., and Karimipour, A., “Effect of Induced Electric Field on Magneto-natural Convection in a Vertical Cylindrical Annulus Filled with Liquid Potassium”, International Journal of Heat and Mass Transfer, Vol. 90, pp. 418-426, (2015).
 
 [7] Illbeigi, M., and Solaimany Nazar, A., “Numerical Simulation of Laminar Convective Heat Transfer and Pressure Drop of Water based-Al2O3 Nanofluid as a Non Newtonian Fluid by Computational Fluid Dynamic (CFD)”, Transp Phenom Nano Micro Scales, Vol. 5, No. 2, pp. 130-138, (2017).
 
[8] Abbasian Arani, A., Abbaszadeh, M., and Ardeshiri, A., “Mixed Convection Fluid Flow and Heat Transfer and Optimal Distribution of Discrete Heat Sources Location in a Cavity Filled with Nanofluid”, Transp Phenom Nano Micro Scales, Vol. 5, No. 1, pp. 30-43, (2016).
 
[9] Esfe, M.H., Zabihi, F., Rostamian, H., and Esfandeh, S., “Experimental Investigation and Model Development of the Non-Newtonian Behavior of CuO-MWCNT-10w40 Hybrid Nano-lubricant for Lubrication Purposes”, Journal of Molecular Liquids, Vol. 249, pp. 677-687, (2018).
 
[10] Esfe, M.H., Rostamian, H., Rejvani, M., and Emami, M.R.S., “Rheological Behavior Characteristics of ZrO2-MWCNT/10w40 Hybrid Nano-lubricant Affected by Temperature, Concentration, and Shear Rate: An Experimental Study and a Neural Network Simulating”, Physica E: Low-dimensional Systems and Nanostructures, Vol. 102, pp. 160-170, (2018).
 
[11] Tian, C., Wang, J., Cao, X., Yan, C., and Ala, A.A., “Experimental Study on Mixed  Convection in an Asymmetrically Heated, Inclined, Narrow, Rectangular Channel”, International Journal of Heat and Mass Transfer, Vol. 116, pp. 1074-1084, (2018).
 
[12].Szabo, P.S., and Früh, W. G., “The Transition from Natural Convection to Thermomagnetic Convection of a Magnetic Fluid in a Non-uniform Magnetic Field”, Journal of Magnetism and Magnetic Materials, Vol. 447, pp. 116-123, (2018).
 
[13] Miroshnichenko I., and Sheremet, M., “Turbulent Natural Convection Heat Transfer in Rectangular Enclosures using Experimental and Numerical Approaches: A Review”, Renewable and Sustainable Energy Reviews, Vol. 82, pp. 40-59, (2018).
 
[14] Bianco, V., Scarpa, F., and Tagliafico, L.A., “Numerical Analysis of the Al2O3-water Nanofluid Forced Laminar Convection in an Asymmetric Heated Channel for Application in Flat Plate PV/T Collector”, Renewable Energy, Vol. 116, pp. 9-21, (2018).
 
[15].Khanafer, K., Vafai, K., and Lightstone, M., “Buoyancy-driven Heat Transfer Enhancement in a Two-dimensional Enclosure Utilizing Nanofluids”, International Journal of Heat and Mass Transfer, Vol. 46, No. 19, pp. 3639-3653, (2003).
 
[16].Kakaç, S., and Pramuanjaroenkij, A., “Review of Convective Heat Transfer Enhancement with Nanofluids”, International Journal of Heat and Mass Transfer, Vol. 52, pp. 3187-3196,  (2009).
 
[17] Mahmoudi, A.H., Shahi, M., Raouf, A.H., and Ghasemian, A., “Numerical Study of Natural Convection Cooling of Horizontal Heat Source Mounted in a Square Cavity Filled with Nanofluid”, International Communications in Heat and Mass Transfer, Vol. 37, No. 8, pp. 1135-1141, (2010).
 
[18].Rahmati, A.R., Roknabadi, A.R., and Abbaszadeh, M., “Numerical Simulation of Mixed Convection Heat Transfer of Nanofluid in a Double Lid-driven Cavity using Lattice Boltzmann Method”, Alexandria Engineering Journal, Vol. 55, No. 4, pp. 3101-3114, (2016).
 
[19].Brinkman, H., “The Viscosity of Concentrated Suspensions and Solutions”, The Journal of Chemical Physics, Vol. 20, No. 4, pp. 571-578, (1952).
 
 [20] Patel, H.E., Sundararajan, T., Pradeep, T., Dasgupta, A., Dasgupta, N., and Das, S.K., “A Micro-convection Model for Thermal Conductivity of Nanofluids”, Pramana, Vol. 65, No. 5, pp. 863-869, (2005).
 
[21].Ho, C., Liu, W., Chang, Y., and Lin, C., “Natural Convection Heat Transfer of Alumina-Water Nanofluid in Vertical Square Enclosures: an Experimental Study”, International Journal of Thermal Sciences, Vol. 49, No. 8, pp. 1345-1353, (2010).
 
[22] Pakravan, H.A., and Yaghoubi, M., “Analysis of Nanoparticles Migration on Natural Convective Heat Transfer of Nanofluids”, International Journal of Thermal Sciences, Vol. 68, pp. 79-93, (2013).
 
[23].Sheikhzadeh, G.A., Dastmalchi, M., and Khorasanizadeh, H., “Effects of Nanoparticles Transport Mechanisms on Al2O3–water Nanofluid Natural Convection in a Square Enclosure”, International Journal of Thermal Sciences, Vol. 66, pp. 51-62, (2013).
 
[24] Ho, C., Chen, D.S., Yan, W.M., and Mahian, O., “Rayleigh–Bénard Convection of Al2O3/water Nanofluids in a Cavity Considering Sedimentation, Thermophoresis, and Brownian Motion”, International Communications in Heat and Mass Transfer, Vol. 57, pp. 22-26, (2014).
 
[25].Garoosi, F., Garoosi, S., and Hooman, K., “Numerical Simulation of Natural Convection and Mixed Convection of the Nanofluid in a Square Cavity using Buongiorno Model”, Powder Technology, Vol. 268, pp. 279-292, (2014).
 
[26].Eslamian, M., Ahmed, M., El-Dosoky, M., and Saghir, M., “Effect of Thermophoresis on Natural Convection in a Rayleigh–Benard Cell Filled with a Nanofluid”, International Journal of Heat and Mass Transfer, Vol. 81, pp. 142-156, (2015).
 
[27].Selimefendigil, F., and Öztop, H.F., “Mixed Convection in a Partially Heated Triangular Cavity Filled with Nanofluid Having a Partially Flexible Wall and Internal Heat Generation”, Journal of the Taiwan Institute of Chemical Engineers, Vol. 70, pp. 168-178, (2017).
 
[28] Bondarenko, D.S., Sheremet, M.A., Oztop, H.F., and Ali, M.E., “Natural Convection of Al2O3/H2O Nanofluid in a Cavity with a Heat-generating Element Heatline Visualization”, International Journal of Heat and Mass Transfer, Vol. 130, pp. 564-574, (2019).
 
[29] Minakov, A., Rudyak, V.Y., and Pryazhnikov, M., “Rheological Behavior of Water and Ethylene Glycol Based Nanofluids Containing Oxide Nanoparticles”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 554, pp. 279-285, (2018).
 
[30] Schiller, L., and Naumann, A., “A Drag Coefficient Correlation”, Vdi Zeitung, Vol. 77, pp. 318–320, (1935).
 
 [31].Corcione, M., “Heat Transfer Features of Buoyancy-driven Nanofluids Inside Rectangular Enclosures Differentially Heated at the Sidewalls”, International Journal of Thermal Sciences, Vol. 49, No. 9, pp. 1536-1546, (2010).