کنترل وقوع-تحریک مقاوم سیستم تعلیق فعال خودرو با درنظر گرفتن عدم قطعیت و قید های فیزیکی

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی برق، دانشگاه تفرش، تفرش

2 نویسنده مسئول، استادیار، دانشکده مهندسی برق، دانشگاه تفرش، تفرش

چکیده

در این مقاله به کنترل مقاوم فعال سیستم تعلیق نیم-خودرو با در نظرگرفتن عدم قطعیتهای پارامتری و مکانیزم وقوع-تحریک پرداخته شده است. در طراحی کنترلکننده، قیدهای فیزیکی حاکم بر سیستم نیز درنظر گرفته شده اند. در ابتدا با بیان معادلات دینامیکی سیستم تعلیق نیم-خودرو و ارائه مکانیزم وقوع-تحریک، مساله به همراه عدم قطعیتهای پارامتری فرمولبندی شده است. سپس با استفاده از قضیه لیاپانوف-کراسووسکی شرایطی در قالب نامساویهای ماتریسی خطی ارائه شدهاند که پایداری مقاوم و کارآیی سیستم تعلیق خودرو را تضمین میکنند. در انتها با بررسی یک سیستم تعلیق نمونه، کارآیی کنترلکننده های طراحی شده مورد مطالعه قرار گرفته است.

کلیدواژه‌ها

موضوعات


 
[1]  Goodarzi, A., and Khajepour, A., "Vehicle Suspension System Technology and Design", Synthesis Lectures on Advances in Automotive Technology, Vol. 1, No. 1, pp. i-77, (2017).
 
[2]  Asadi, E., Ribeiro, R., Khamesee, M. B., and Khajepour, A., "Analysis, Prototyping, and Experimental Characterization of an Adaptive Hybrid Electromagnetic Damper for Automotive Suspension Systems", IEEE Transactions on Vehicular Technology, Vol. 66, No. 5, pp. 3703-3713, (2016).
 
[3]  Sun, W., Gao, H., and Shi, P., "Advanced Control for Vehicle Active Suspension Systems", Springer, (2020).
 [4] Pan, H., Sun, W., Jing, X., Gao, H., and Yao, J., "Adaptive Tracking Control for Active Suspension Systems with Non-ideal Actuators", Journal of Sound and Vibration, Vol. 399, pp. 2-20, (2017).
 
[5] Wang, G., Chen, C., and Yu, S., "Robust Non-fragile Finite-frequency H Static Output-Feedback Control for Active Suspension Systems", Mechanical Systems and Signal Processing, Vol. 91, pp. 41-56, (2017).
 
[6]  Arana, C., Evangelou, S. A., and Dini, D., "Series Active Variable Geometry Suspension Application to Comfort Enhancement", Control Engineering Practice, Vol. 59, pp. 111-126, (2017).
 
[7]  Hofmann, A., and Hanss, M., "Fuzzy Arithmetical Controller Design for Active Road Vehicle Suspension in the Presence of Uncertainties", in 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, pp. 582-587, (2017).
 
[8]  Tang, X., Du, H., Sun, S., Ning, D., Xing, Z., and Li, W., "Takagi–Sugeno Fuzzy Control for Semi-active Vehicle Suspension with a Magnetorheological Damper and Experimental Validation", IEEE/ASME Transactions on Mechatronics, Vol. 22, No. 1, pp. 291-300, (2017).
 
[9]  Su, X., "Master–slave Control for Active Suspension Systems with Hydraulic Actuator Dynamics", IEEE Access, Vol. 5, pp. 3612-3621, (2017).
 
[10] Wen, S., Chen, M. Z., Zeng, Z., Yu, X., and Huang, T., "Fuzzy Control for Uncertain Vehicle Active Suspension Systems via Dynamic Sliding-mode Approach", IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 47, No. 1, pp. 24-32, (2017).
 
[11] Jing, H., Wang, R., Li, C., and Bao, J., "Robust Finite-frequency H Control of Full-car Active Suspension", Journal of Sound and Vibration, Vol. 441, pp. 221-239, (2019).
 
[12] Ataei, M., Asadi, E., Goodarzi, A., Khajepour, A., and Khamesee, M. B., "Multi-objective Optimization of a Hybrid Electromagnetic Suspension System for Ride Comfort, Road Holding and Regenerated Power", Journal of Vibration and Control, Vol. 23, No. 5, pp. 782-793, (2017).
 
[13] Bender, E., "Optimum Linear Preview Control with Application to Vehicle Suspension", Journal of Basic Engineering, Vol. 90, No. 2, pp. 213-221, (1968).
 
[14] Thompson, A., Davis, B., and Pearce, C., "An Optimal Linear Active Suspension with Finite Road Preview", SAE Transactions, Vol. 89, pp. 2009-2020, (1980).
 
[15] Sakami, M., Kamiya, J., and Shimogo, T., "Optimal Preview Control of Vehicle Suspension", Bulletin of JSME, Vol. 19, No. 129, pp. 265-273, (1976).
 
[16]  Du, H., and Zhang, N., "H Control of Active Vehicle Suspensions with Actuator Time Delay", Journal of Sound and Vibration, Vol. 301, No. 1-2, pp. 236-252, (2007).
 
[17] Guclu, R., "Fuzzy Logic Control of Seat Vibrations of a Non-linear Full Vehicle Model", Nonlinear Dynamics, Vol. 40, No. 1, pp. 21-34, (2005).
 
[18]  Liu, Y. J., and Chen, H., "Adaptive Sliding Mode Control for Uncertain Active Suspension Systems with Prescribed Performance", IEEE Transactions on Systems, Man, and Cybernetics: Systems, Early Access, (2020).
 
[19]  Wang, G., Liu, F., and Sun, Z., "Saturated Adaptive Backstepping Control for Uncertain Nonlinear Active Suspension Systems with Prescribed Performance", in Proceedings of the 11th International Conference on Modelling, Identification and Control (ICMIC2019), Singapore, pp. 767-776, (2020).
 
[20]  Pang, H., Liu, X., Shang, Y., and Yao, R., "A Hybrid Fault-tolerant Control for Nonlinear Active Suspension Systems Subjected to Actuator Faults and Road Disturbances", Complexity, Vol. 2020, Article ID 1874212, 14 Pages, (2020).
 
[21]  Wang, R., Jing, H., Karimi, H. R., and Chen, N., "Robust Fault-Tolerant H Control of Active Suspension Systems with Finite-frequency Constraint", Mechanical Systems and Signal Processing, Vol. 62, pp. 341-355, (2015).
 
[22]  Hua, C., Chen, J., Li, Y., and Li, L., "Adaptive Prescribed Performance Control of Half-Car Active Suspension System with Unknown Dead-zone Input", Mechanical Systems and Signal Processing, Vol. 111, pp. 135-148, (2018).
 
[23]  Nkomo, L. I., Nyandoro, O. T., and Dove, A., "Comparison of Backstepping and Sliding Mode Control Techiniques for a High Performance Active Vehicle Suspension System", IFAC-Papers OnLine, Vol. 50, No. 1, pp. 12604-12610, (2017).
 
[24]  Wang, G., Chen, C., and Yu, S., "Optimization and Static Output-feedback Control for Half-car Active Suspensions with Constrained Information", Journal of Sound and Vibration, Vol. 378, pp. 1-13, (2016).
 
[25] Peng, C., and Li, F., "A Survey on Recent Advances in Event-triggered Communication and Control", Information Sciences, Vol. 457, pp. 113-125, (2018).
 
[26] Bansal, K., and Mukhija, P., "Event-triggered Control of Vehicle Active Suspension Systems", in Indian Control Conference (ICC), Kanpur, India, pp. 178-183, (2018).
 
[27] Bansal, K., Dahiya, P., and Mukhija, P., "Event-triggered Based Reliable Control of Vehicle Active Suspension System under Actuator Faults", IFAC-Papers OnLine, Vol. 51, No. 1, pp. 196-201, (2018).
 
[28] Du, H., and Zhang, N., "Constrained H Control of Active Suspension for a Half-car Model with a Time Delay in Control", Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. 222, No. 5, pp. 665-684, (2008).
 
[29] Wu, Z. G., Park, J. H., Su, H., and Chu, J., "Stochastic Stability Analysis of Piecewise Homogeneous Markovian Jump Neural Networks with Mixed Time-delays", Journal of the Franklin Institute, Vol. 349, No. 6, pp. 2136-2150, (2012).
[31]  Kazemy, A., Lam, J., and Li, X., "Finite-frequency H Control for Offshore Platforms Subject to Parametric Model Uncertainty and Practical Hard Constraints", ISA Transactions, Vol. 83, pp. 53-65, (2018).
 
[32]  Li, H., Yu, J., Hilton, C., and Liu, H., "Adaptive Sliding-mode Control for Nonlinear Active Suspension Vehicle Systems using T–S fuzzy Approach", IEEE Transactions on Industrial Electronics, Vol. 60, No. 8, pp. 3328-3338, (2013).