افزایش ارتباط بین آب، انرژی و محیط زیست در یک مزرعه خورشیدی جهت تولید آب شیرین

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دکتری، دانشکده مهندسی مکانیک، دانشگاه صنعتی شاهرود، شاهرود، ایران

2 استاد، دانشکده مهندسی مکانیک، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

در این مقاله توسعه‌ مفهوم کاهش اثرات زیست محیطی پساب سیستم اسمز معکوس جهت افزایش ارتباط بین آب، انرژی و محیط زیست در یک مزرعه‌‌ خورشیدی بکار گرفته شده است. از طرفی، با استفاده از سیکل ارگانیک رانکین به بررسی پیکربندی نوین بر اساس آنالیز انرژی، اگزرژی، اقتصادی و زیست محیطی پرداخته شده است. همچنین، بهینه سازی بر اساس پیکربندی مناسب، انتخاب سیال عامل مناسب، کاهش اثرات زیست محیطی پساب و تعیین پارامترهای طراحی مزرعه‌ی خورشیدی با الگوریتم ژنتیک صورت گرفته است. نتایج نشان دهنده کاهش 12 درصدی اثرات زیست محیطی پساب خروجی و افزایش 5/7 درصدی راندمان اگزرژی می باشد.

کلیدواژه‌ها

موضوعات


[1] M. Li, "Optimization of Multi-stage Hybrid RO-PRO Membrane Processes at the Water–energy Nexus," Chemical Engineering Research and Design, Vol. 137, pp. 1-9, 2018, doi: https://doi.org/10.1016/j.cherd.2018.06.042.
 
[2] A. A. Shayesteh, O. Koohshekan, A. Ghasemi, M. Nemati, and H. Mokhtari, "Determination of the ORC-RO System Optimum Parameters based on 4E Analysis; Water–Energy-Environment Nexus," Energy Conversion and Management, Vol. 183, pp. 772-790, 2019/03/01/ 2019, doi: https://doi.org/10.1016/j.enconman.2018.12.119.
 
[3] M. W. Shahzad, M. Burhan, L. Ang, and K. C. Ng, "Energy-water-environment Nexus Underpinning Future Desalination Sustainability," Desalination, Vol. 413, pp. 52-64, 2017/07/01/ 2017, doi: https://doi.org/10.1016/j.desal.2017.03.009.
[4] E. Jones, M. Qadir, M. T. H. van Vliet, V. Smakhtin, and S. m. Kang, "The State of Desalination and Brine Production: A global Outlook," Science of The Total Environment, Vol. 657, pp. 1343-1356, 2019/03/20/ 2019, doi: https://doi.org/10.1016/j.scitotenv.2018.12.076.
 
[5] S. Burn et al., "Desalination Techniques — A review of the Opportunities for Desalination in Agriculture," Desalination, Vol. 364, pp. 2-16, 2015/05/15/ 2015, doi: https://doi.org/10.1016/j.desal.2015.01.041.
 
[6] S. Lattemann, M. D. Kennedy, J. C. Schippers, and G. Amy, "Chapter 2 Global Desalination Situation," In Sustainability Science and Engineering, Vol. 2, I. C. Escobar and A. I. Schäfer Eds.: Elsevier, 2010, pp. 7-39. doi: https://doi.org/10.1016/S1871-2711(09)00202-5.
 
[7] S. Lattemann, M. D. Kennedy, J. C. Schippers, and G. Amy, "Chapter 2 Global Desalination Situation," In Sustainability Science and Engineering, Vol. 2, I. C. Escobar and A. I. Schäfer Eds.: Elsevier, 2010, pp. 7-39. doi: https://doi.org/10.1016/S1871-2711(09)00202-5.
 
[8] A. Naminezhad and M. Mehregan, "Energy and Exergy Analyses of a Hybrid System Integrating Solar-driven Organic Rankine Cycle, Multi-effect Eistillation, and  Reverse Osmosis Desalination Systems," Renewable Energy, Vol. 185, pp. 888-903, 2022/02/01/ 2022, doi: https://doi.org/10.1016/j.renene.2021.12.076.
 
[9] N. Voutchkov, "Energy Use for Membrane Seawater Desalination – Current Status and Trends," Desalination, Vol. 431, pp. 2-14, 2018/04/01/ 2018, doi: https://doi.org/10.1016/j.desal.2017.10.033.
 
[10] S. M. Shalaby, "Reverse Osmosis Desalination Powered by Photovoltaic and Solar Rankine Cycle Power Systems: A Review," Renewable and Sustainable Energy Reviews, Vol. 73, pp. 789-797, 2017/06/01/ 2017, doi: https://doi.org/10.1016/j.rser.2017.01.170.
 
[11] F. E. Ahmed, R. Hashaikeh, and N. Hilal, "Solar Powered Desalination – Technology, Energy and Future Outlook," Desalination, Vol. 453, pp. 54-76, 2019/03/01/ 2019, doi:  https://doi.org/10.1016/j.desal.2018.12.002.
 
[12] J. H. Reif and W. Alhalabi, "Solar-thermal Powered Desalination: Its Significant Challenges and Potential," Renewable and Sustainable Energy Reviews, Vol. 48, pp. 152-165, 2015/08/01/ 2015, doi: https://doi.org/10.1016/j.rser.2015.03.065.
 
[13] A. Pugsley, A. Zacharopoulos, J. D. Mondol, and M. Smyth, "Global Applicability of Solar Desalination," Renewable Energy, Vol. 88, pp. 200-219, 2016/04/01/ 2016, doi: https://doi.org/10.1016/j.renene.2015.11.017.
 
[14] S. Gorjian and B. Ghobadian, "Solar Desalination: A Sustainable Solution to Water Crisis in Iran," Renewable and Sustainable Energy Reviews, Vol. 48, pp. 571-584, 2015/08/01/ 2015, doi: https://doi.org/10.1016/j.rser.2015.04.009.
 
[15] D. W. Bian et al., "Optimization and Design of a Low-cost, Village-scale, Photovoltaic-powered, Electrodialysis Reversal Desalination System for Rural India," Desalination, Vol. 452, pp. 265-278, 2019/02/15/ 2019, doi: https://doi.org/10.1016/j.desal.2018.09.004.
 
[16] R. B. Saffarini, E. K. Summers, H. A. Arafat, and J. H. Lienhard V, "Technical Evaluation of Stand-alone Solar Powered Membrane Distillation Systems," Desalination, Vol. 286, pp. 332-341, 2012/02/01/ 2012, doi: https://doi.org/10.1016/j.desal.2011.11.044.
 
[17] P. T. Tsilingiris, "The Analysis and Performance of Large-scale Stand-alone Solar Desalination Plants," Desalination, Vol. 103, No. 3, pp. 249-255, 1995/12/01/ 1995, doi: https://doi.org/10.1016/0011-9164(95)00077-1.
 
[18] D. Hoffman, "The Application of Solar Energy for Large-scale Seawater Desalination," Desalination, Vol. 89, No. 2, pp. 115-183, 1992/12/01/ 1992, doi: https://doi.org/10.1016/0011-9164(92)80099-U.
 
[19] P. Glueckstern, "Potential Uses of Solar Energy for Seawater Desalination," Desalination, Vol. 101, No. 1, pp. 11-20, 1995/03/01/ 1995, doi: https://doi.org/10.1016/0011-9164(95)00003-K.
 
[20] S. Kalogirou, "Use of  Parabolic trough Solar Energy Collectors for Sea-water Desalination," Applied Energy, Vol. 60, No. 2, pp. 65-88, 1998/06/01/ 1998, doi: https://doi.org/10.1016/S0306-2619(98)00018-X.
 
[21] F. Trieb and H. Müller-Steinhagen, "Concentrating Solar Power for Seawater Desalination In the Middle East and North Africa," Desalination, Vol. 220, No. 1, pp. 165-183, 2008/03/01/ 2008, doi: https://doi.org/10.1016/j.desal.2007.01.030.
 
[22] F. Trieb et al., "Combined Solar Power and Desalination Plants for the Mediterranean Region Sustainable Energy Supply using Large-scale Solar Thermal Power Plants," Desalination, Vol. 153, No. 1, pp. 39-46, 2003/02/10/ 2003, doi: https://doi.org/10.1016/S0011-9164(02)01091-3.
 
[23] F. Trieb, H. Müller-Steinhagen, J. Kern, J. Scharfe, M. Kabariti, and A. Al Taher, "Technologies for Large Scale Seawater Desalination using Concentrated Solar Radiation," Desalination, Vol. 235, No. 1, pp. 33-43, 2009/01/15/ 2009, doi: https://doi.org/10.1016/j.desal.2007.04.098.
 
[24] P. Palenzuela, D.-C. Alarcón-Padilla, and G. Zaragoza, "Large-scale Solar Desalination by Combination with CSP: Techno-economic Analysis of Different Options for the Mediterranean Sea and the Arabian Gulf," Desalination, Vol. 366, pp. 130-138, 2015/06/15/ 2015, doi: https://doi.org/10.1016/j.desal.2014.12.037.
 
[25] C. Li, Y. Goswami, and E. Stefanakos, "Solar Assisted Sea Water Desalination: A review," Renewable and Sustainable Energy Reviews, Vol. 19, pp. 136-163, 2013/03/01/ 2013, doi: https://doi.org/10.1016/j.rser.2012.04.059.
 
[26]      M. R. Qtaishat and F. Banat, "Desalination by Solar Powered Membrane Distillation Systems," Desalination, Vol. 308, pp. 186-197, 2013/01/02/ 2013, doi: https://doi.org/10.1016/j.desal.2012.01.021.
 
[27] M. Shatat, M. Worall, and S. Riffat, "Opportunities for Solar Water Desalination Worldwide: Review," Sustainable Cities and Society, Vol. 9, pp. 67-80, 2013/12/01/ 2013, doi: https://doi.org/10.1016/j.scs.2013.03.004.
[28] F. Suárez, J. A. Ruskowitz, A. E. Childress, and S. W. Tyler, "Understanding the Expected Performance of Large-scale Solar Ponds from Laboratory-scale Observations and Numerical Modeling," Applied Energy, Vol. 117, pp. 1-10, 2014/03/15/ 2014, doi: https://doi.org/10.1016/j.apenergy.2013.12.005.
 
[29] F. Suárez, J. A. Ruskowitz, A. E. Childress, and S. W. Tyler, "Understanding the Expected Performance of Large-scale Solar Ponds from Laboratory-scale Observations and Numerical Modeling," Applied Energy, Vol. 117, pp. 1-10, 2014/03/15/ 2014, doi: https://doi.org/10.1016/j.apenergy.2013.12.005.
 
[30] A. H. Elsheikh, S. W. Sharshir, M. Abd Elaziz, A. E. Kabeel, W. Guilan, and Z. Haiou, "Modeling of Solar Energy Systems using Artificial Neural Network: A Comprehensive Review," Solar Energy, Vol. 180, pp. 622-639, 2019/03/01/ 2019, doi: https://doi.org/10.1016/j.solener.2019.01.037.
 
[31] I. B. Askari and M. Ameri, "Solar Rankine Cycle (SRC) Powered by Linear Fresnel Solar Field and Integrated with Multi Effect Desalination (MED) System," Renewable Energy, Vol. 117, pp. 52-70, 2018/03/01/ 2018, doi: https://doi.org/10.1016/j.renene.2017.10.033.
 
[32] D. Manolakosa, G. Papadakisa, Essam Sh. Mohameda, S. Kyritsisa, K. Bouzianas, Design of an Autonomous Low-temperature Solar Rankine Cycle System for Reverse Osmosis Desalination, Desalination 183 (2005) 73–80. doi: https://doi.org/10.1016/j.desal.2005.02.044.
 
[33] A. M. Delgado-Torres and L. García-Rodríguez, "Double Cascade Organic Rankine Cycle for Solar-driven Reverse Osmosis Desalination," Desalination, Vol. 216, No. 1, pp. 306-313, 2007/10/05/ 2007, doi: https://doi.org/10.1016/j.desal.2006.12.017.
 
[34] J. C. Bruno, J. López-Villada, E. Letelier, S. Romera, and A. Coronas, "Modelling and Optimisation of Solar Organic Rankine Cycle Engines for Reverse Osmosis Desalination," Applied Thermal Engineering, Vol. 28, No. 17, pp. 2212-2226, 2008/12/01/ 2008, doi: https://doi.org/10.1016/j.applthermaleng.2007.12.022.
 
[35] G. Kosmadakis, D. Manolakos, S. Kyritsis, and G. Papadakis, "Economic Assessment of a Two-stage Solar Organic Rankine Cycle for Reverse Osmosis Desalination," Renewable Energy, Vol. 34, No. 6, pp. 1579-1586, 2009/06/01/ 2009, doi: https://doi.org/10.1016/j.renene.2008.11.007.
 
[36] B. F. Tchanche, G. Lambrinos, A. Frangoudakis, and G. Papadakis, "Exergy Analysis of Micro-organic Rankine Power Cycles for a Small Scale Solar Driven Reverse Osmosis Desalination System," Applied Energy, Vol. 87, No. 4, pp. 1295-1306, 2010/04/01/ 2010, doi: https://doi.org/10.1016/j.apenergy.2009.07.011.
 
[37] A. S. Nafey, M. A. Sharaf, and L. García-Rodríguez, "Thermo-economic Analysis of a Combined Solar Organic Rankine Cycle-reverse Osmosis Desalination Process with Different Energy Recovery Configurations," Desalination, Vol. 261, No. 1, pp. 138-147, 2010/10/15/ 2010, doi: https://doi.org/10.1016/j.desal.2010.05.017.
 
[38] S. Karellas, K. Terzis, and D. Manolakos, "Investigation of an Autonomous Hybrid Solar Thermal ORC–PV RO Desalination System. The Chalki Island Case," Renewable Energy, Vol. 36, No. 2, pp. 583-590, 2011/02/01/ 2011, doi: https://doi.org/10.1016/j.renene.2010.07.012.
[39] B. Peñate and L. García-Rodríguez, "Seawater Reverse Osmosis Desalination Driven by a Solar Organic Rankine Cycle: Design and Technology Assessment  for Medium Capacity Range," Desalination, Vol. 284, pp. 86-91, 2012/01/04/ 2012, doi: https://doi.org/10.1016/j.desal.2011.08.040.
 
[40] C. Li, G. Kosmadakis, D. Manolakos, E. Stefanakos, G. Papadakis, and D. Y. Goswami, "Performance Investigation of Concentrating Solar Collectors Coupled with a Transcritical Organic Rankine Cycle for Power and Seawater Desalination Co-generation," Desalination, Vol. 318, pp. 107-117, 2013/06/03/ 2013, doi: https://doi.org/10.1016/j.desal.2013.03.026.
 
[41] H. Mokhtari, H. Ahmadisedigh, and I. Ebrahimi, "Comparative 4E Analysis for Solar Desalinated Water Production by Utilizing Organic Fluid and Water," Desalination, Vol. 377, pp. 108-122, 2016/01/01/ 2016, doi: https://doi.org/10.1016/j.desal.2015.09.014.
 
[42] A. Nemati, M. Sadeghi, and M. Yari, "Exergoeconomic Analysis and Multi-objective Optimization of a Marine Engine Waste Heat Driven RO Desalination System Integrated with an Organic Rankine Cycle using Zeotropic Working Fluid," Desalination, Vol. 422, pp. 113-123, 2017/11/15/ 2017, doi: https://doi.org/10.1016/j.desal.2017.08.012.
 
[43] E. A. Chadegani, M. Sharifishourabi, and F. Hajiarab, "Comprehensive Assessment of a Multi-generation System Integrated with a Desalination System: Modeling and Analysing," Energy Conversion and Management, Vol. 174, pp. 20-32, 2018/10/15/ 2018, doi: https://doi.org/10.1016/j.enconman.2018.08.011.
 
[44] M. Asayesh, A. Kasaeian, and A. Ataei, "Optimization of a Combined Solar Chimney for Desalination and Power Generation," Energy Conversion and Management, Vol. 150, pp. 72-80, 2017/10/15/ 2017, doi: https://doi.org/10.1016/j.enconman.2017.08.006.
 
[45] B. Du et al., "Area Optimization of Solar Collectors for Adsorption Desalination," Solar Energy, Vol. 157, pp. 298-308, 2017/11/15/ 2017, doi: https://doi.org/10.1016/j.solener.2017.08.032.
 
[46] Y. Du, L. Xie, J. Liu, Y. Wang, Y. Xu, and S. Wang, "Multi-objective Optimization of Reverse Osmosis Networks By Lexicographic Optimization and Augmented Epsilon Constraint Method," Desalination, Vol. 333, No. 1, pp. 66-81, 2014/01/15/ 2014, doi: https://doi.org/10.1016/j.desal.2013.10.028.
 
[47] A. M. Nabati, M. S. sadeghi, S. N. Naserabad, H. Mokhtari, and S. izadpanah, "Thermo-economic Analysis for Determination of Optimized Connection between Solar Field and Combined Cycle Power Plant," Energy, Vol. 162, pp. 1062-1076, 2018/11/01/ 2018, doi: https://doi.org/10.1016/j.energy.2018.08.047.
 
[48] R. Forristall, "Heat Transfer Analysis and Modeling of a Parabolic trough Solar Receiver Implemented in Engineering Equation Solver Book," National Renewable Energy Lab., Golden, CO.(US), 2003. http://www.osti.gov/bridge.
 
[49] Bejan A, Tsatsaronis G, Moran M. Thermal Design and Optimization. New York: Wiley; 1996.
 
[50] H. Mokhtari, A. Esmaieli, and H. Hajabdollahi, "Thermo‐economic Analysis and Multiobjective Optimization of Dual Pressure Combined Cycle Power Plant with Supplementary Firing," Heat Transfer—Asian Research, Vol. 45, No. 1, pp. 59-84, 2016, doi: https://doi.org/10.1002/htj.21153.
 
[51] M. Ameri, H. Mokhtari, and M. Bahrami, "Energy, Exergy, Exergoeconomic and Environmental (4E) Optimization of a Large Steam Power Plant: A Case Study," Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, Vol. 40, No. 1, pp. 11-20, 2016/03/01 2016, doi: https://doi.org/10.1007/s40997-016-0002-z.
 
[52] H. Mokhtari, H. Ahmadisedigh, and M. Ameri, "The Optimal Design and 4E Analysis of Double Pressure HRSG Utilizing Steam Injection for Damavand Power Plant," Energy, Vol. 118, pp. 399-413, 2017/01/01/ 2017, doi: https://doi.org/10.1016/j.energy.2016.12.064.
 
[53] M. Ameri, H. Mokhtari, and M. Mostafavi Sani, "4E Analyses And Multi-objective Optimization of Different Fuels Application for a Large Combined Cycle Power  Plant," Energy, Vol. 156, pp. 371-386, 2018/08/01/ 2018, doi: https://doi.org/10.1016/j.energy.2018.05.039.
 
[54] B. Golkar et al., "Determination of Optimum Hybrid Cooling Wet/Dry Parameters and Control System in Off Design Condition: Case Study," Applied Thermal Engineering, Vol. 149, pp. 132-150, 2019/02/25/ 2019, doi: https://doi.org/10.1016/j.applthermaleng.2018.12.017.
 
[55] H. Mokhtari, M. Sepahvand, and A. fasihfar, "Thermoeconomic and Exergy Analysis in using Hybrid Systems (GT+MED+RO) for Desalination of Brackish Water in Persian Gulf," Desalination, Vol. 399, pp. 1-15, 2016/12/01/ 2016, doi: https://doi.org/10.1016/j.desal.2016.07.044.
 
[56] M. H. Beni et al., "Water-energy Nexus Approach for Optimal Design of Hybrid Cooling System in Direct Reduction of  Iron Plant," Journal of Cleaner Production, Vol. 287, p. 125576, 2021/03/10/ 2021, doi: https://doi.org/10.1016/j.jclepro.2020.125576.
 
[57] E. Bellos and C. Tzivanidis, "Assessment of the Thermal Enhancement Methods in Parabolic trough Collectors," International Journal of Energy and Environmental Engineering, Vol. 9, No. 1, pp. 59-70, 2018/03/01 2018, doi: https://doi.org/10.1007/s40095-017-0255-3.
 
[58] E. Macchi and M. Astolfi, Organic Rankine Cycle (ORC) Power Systems: Technologies and Applications. Woodhead Publishing, 2016. EBook ISBN: 9780081005118.