طراحی مشاهدهگر تطبیقی و کنترل کننده تحملپذیر برای هلیکوپتر 𝐻∞ عیب تطبیقی مد لغزشی بهینه سه درجه آزادی در حضور عیب و اشباع عملگر

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

استادیار، گروه آموزشی خلبانی، دانشکده مهندسی و پرواز، دانشگاه افسری امام علی (ع)، تهران، ایران

چکیده

ه ) LMI( بهینه مبتنی بر نامساوی ماتریسی خطی 4 𝐻∞ در این مقاله یک مشاهدهگر تطبیقی 9
تطبیقی مد لغزشی 6 ) FTC( به همراه یک کنترلکننده تحملپذیر عیب ) FE( منظور تخمین عیب 0
برای جبران عیب پیشنهاد شده است. در این رویکرد، حالتهای ) LMI( بهینه مبتنی بر 𝐻∞ ،) ASM(
سیستم و اثر انواع عیبهای )عیب جمعشونده، کاهش کارایی و قفل شدن عملگر( اتفاق افتاده در
عملگر، نایقینی در دینامیک سیستم و عملگرها در حضور اغتشاش خارجی و نویز، توسط مشاهدهگر
تطبیقی تخمین زده شده است. علاوه بر موارد ذکر شده، در این کار به پدیدهی اشباع توجه شده
است. از آنجایی که در عمل، به ازای سیگنالهای کنترلی بزرگ، عملگرها دچار اشباع میشوند،
پدیدهی اشباع عملگرها در این کار مدلسازی شده و اثر اشباع توسط مشاهدهگر تخمین زده شده
است. در انتها، نتایج شبیهسازی بر روی دینامیک هلیکوپتر سه درجه آزادی کوانسر به منظور نشان
دادن اثر بخشی رویکرد پیشنهادی، نمایش شده است.

کلیدواژه‌ها

موضوعات


[1] Edward, C., Lombearts, T., and Smaili, H., "Fault Tolerant Flight Control–a Benchmark Challenge", Lecture Notes in Control and Information Sciences, Springer, Berlin, Heidelberg, Germany, pp.110-132, (2010).
[2] Zolghadri, A., Henry, D., Cieslak, J., Efimov, D., and Goupil, P., "Fault Diagnosis and Fault-Tolerant Control and Guidance for Aerospace Vehicles", Part of the book series: Advances in Industrial Control (AIC), Springer, Berlin, Heidelberg, Germany, pp. 32-
56, (2014).
[3] Patton, R., "Fault-Tolerant Control. Encyclopedia of Systems and Control", Encyclopedia of Systems and Control, Springer, Berlin, Heidelberg, Germany, pp.135- 154, (2015).
[4] Minh-Duc, H., Hamel, T., Morin, P., and Samson, C., "Introduction to Feedback Control of Underactuated VTOL Vehicles: A Rview of Basic Control Design Ideas and Principles", IEEE Control Systems Magazine, Vol. 33, No. 1, pp. 61-75, (2013).
[5] Liu, Z., He, Y.,Yang, L., and Han, J., "Control Techniques of Tilt Rotor Unmanned Aerial Vehicle Systems: A Review", Chinese Journal of Aeronautics, Vol. 30, No. 1, pp. 135-148, (2017).
[6] Chen, M., Ge, S., and Ren, B., "Robust Attitude Control of Helicopters with Actuator Dynamics using Neural Networks", IET Control Theory & Applications, Vol. 4, No. 12, pp. 2837-2854, (2010).
[7] Alexis, K., Nikolakopoulos, G., and Tzes, A., "Model Predictive Quadrotor Control: Attitude, Altitude and Position Experimental Studies", IET Control Theory & Applications, Vol. 6, No. 12, pp. 1812-1827, (2012).
[8] Zhan, L., Jinyong, Y., Xing, X., and Huijun, G., "Robust Output-Feedback Attitude Control of a Three-degree-of-freedom Helicopter via Sliding-mode Observation Technique", IET Control Theory & Applications, Vol. 9, No. 11, pp. 1637-1643, (2015).
[9] Carlos, I., Aldo, J., and Anand, S., "Attitude Control of Quadrotors based on Fractional Sliding Modes: Theory and Experiments", IET Control Theory & Applications, Vol. 10, No. 7, pp. 825-832, (2016).
[10] George, V., Liang, T., Graham, D., Luis, G., "From Mission Planning to Flight Control of Unmanned Aerial Vehicles: Strategies and Implementation Tools", Annual Reviews in Control, Vol. 29, No. 1, pp. 101-115, (2005).
[11] Guillaume J.J. D., "Fault-tolerant Flight Control and Guidance Systems: Practical Methods for Small Unmanned Aerial Vehicles", Springer Science and Business Media, Berlin, Heidelberg, Germany, pp. 158-164 (2009).
[12] Qi, X., Theilliol, D., Qi, J., and Zhang, Y., Han, J., Song, D., Wang, L., and Xia, Y., "Fault Diagnosis and Fault Tolerant Control Methods for Manned and Unmanned Helicopters: a Literature Review", Conference on Control and Fault-Tolerant Systems
(SysTol), 9-11 Oct, londan, England, pp. 132-139, (2013).
[13] Kimon, P.V., George J.V., "Handbook of Unmanned Aerial Vhicles", Springer, Berlin, Heidelberg, Germany, pp. 121-152, (2015).
[14] Apkarian, J., "3-DOF Helicopter ReferenceManual", Quanser Consulting Inc, Canada, pp.25-112, (2006).
[15] Zheng, B., and Zhong, Y., "Robust Attitude Regulation of a 3-DOF Helicopter Benchmark: Theory and Experiments", IEEE Transactions on Industrial Electronics, Vol. 58, No. 2, pp. 660-670, (2010).
[16] Castañeda, H., Plestan, F., Chriette, A., and León-Morales, J., "Continuous Differentiator based on Adaptive Second-Order Sliding-mode Control for a 3-DOF Helicopter", IEEE Transactions on Industrial Electronics, Vol. 63, No. 9, pp. 5786- 5793, (2016).
[17] Yang, H., Jiang, B., Liu, H., Yang, H., and Zhang, Q., "Attitude Synchronization for Multiple 3-DOF Helicopters with Actuator Faults", IEEE/ASME Transactions on Mechatronics, Vol. 24, No. 2, pp. 597-608, (2019).
[18] Shan, J., Liu, H., and Nowotny, S., "Synchronised Trajectory-Tracking Control of Multiple 3-DOF Experimental Helicopters", IEE Proceedings-control Theory and Applications, Vol. 152, No. 6, pp. 683-692, (2005).
[19] Meza-Sánchez, M., Aguilar, L.T., and Orlov, Y., "Output Sliding Mode-based Stabilization of Underactuated 3-DOF Helicopter Prototype and its Experimental Verification", Journal of the Franklin Institute, Vol. 352, No. 4, pp. 1580-1594, (2015).
[20] Lan, J., and Patton, R. J., "A New Strategy for Integration of Fault Estimation within Fault-tolerant Control", Automatica, Vol. 69, pp. 48-59, (2016).
[21] Chen, F., Zhang, K., Jiang, B., and Wen, C., "Adaptive Sliding Mode Observer-based Robust Fault Reconstruction for a Helicopter with Actuator Fault", Asian Journal of Control, Vol. 18, No. 4, pp. 1558-1565, (2016).
[22] Afonso, R.J.M., and Galvão, R.K.H. "Predictive Control of a Helicopter Model with Tolerance to Actuator Faults", Control and Fault-tolerant Systems (SysTol) conference: IEEE, Oct 6-8, Nice, France, pp. 744-751, (2010).
[23] Chen, F., Hou, R., Jiang, B., and Tao, G., "Study on Fast Terminal Sliding Mode Control for a Helicopter via Quantum Information Technique and Nonlinear Fault Observer", Int. J. Innovative Comput. Inf. Control, Vol. 9, No. 8, pp. 3437-3447, (2013).
[24] Zheng, W., Fuyang, C., and Bin, J., "An Improved Nonlinear Model and Adaptive Fault- Tolerant Control for a Twin Rotor Helicopter", in Proceedings of the 33rd Chinese Control Conference: IEEE, July 28-30, Nanjing, China, pp. 3208-3212, (2014).
[25] Chen,M., Shi, P., and Lim, C.C., "Adaptive Neural Fault-tolerant Control of a 3-DOF Model Helicopter System", IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 46, No. 2, pp. 260-270, (2015).
[26] Alejandra, F., Jérôme, C., David, H., Ali, Z., and Leonid, M.F., "Output Tracking of Systems Subjected to Perturbations and a Class of Actuator Faults based on HOSM Observation and Identification", Automatica, Vol. 59, pp. 200-205, (2015).
[27] Yang, H., Jiang, B., Yang, H., and Liu, H. H., "Synchronization of Multiple 3-DOF Helicopters under Actuator Faults and Saturations with Prescribed Performance", ISA transactions, Vol. 75, pp. 118-126, (2018).
[28] Lan, J., Patton, R.J., and Zhu, X., "Integrated Fault-Tolerant Control for a 3-DOF Helicopter with Actuator Faults and Saturation", IET Control Theory & Applications, Vol. 11, No. 14, pp. 2232-2241, (2017).
[29] Kiefer, T., Graichen, K., and Kugi, A., "Trajectory Tracking of a 3DOF Laboratory Helicopter Under Input and State Constraints", IEEE Transactions on Control Systems Technology, Vol. 18, No. 4, pp. 944-952, (2009).
[30] Zewei, Z., Liang, S., and Yao, Z., "Attitude Tracking Control of a 3-DOF Helicopter with Actuator Saturation and Model Uncertainties", 34th Chinese Control Conference (CCC),: IEEE, July 28-30, Hongzhou, China, pp. 5641-5646. (2015).
[31] Hasan, K.K., "Nonlinear Systems", 2nd editon, Upper Saddle River, New Jersey, USA, pp.45-87, (2002).
[32] Hadi, A.,Mohammad, J. K., "LMI‐ based Adaptive Output Feedback Fault-Tolerant Controller Design for Nonlinear Systems", International Journal of Adaptive Control and Signal Processing, Vol. 31, No. 12, pp. 1885-1902, (2017).
[33] Philippe, G., "Oscillatory Failure Case Detection in the A380 Electrical Flight Control System by Analytical Redundancy", Control Engineering Practice, Vol. 18, No. 9, pp. 1110-1119, (2010).
[34] Yuan-Xin, L., and Guang-Hong, Y., "Robust Adaptive Fault-Tolerant Control for a Class of Uncertain Nonlinear Time Delay Systems", IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 47, No. 7, pp. 1554-1563, (2016).
[35] Yuan-Xin, L., and Guang-Hong, Y., "Adaptive Fuzzy Decentralized Control for a Class of Large-Scale Nonlinear Systems with Actuator Faults and Unknown Dead Zones," IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 47, No. 5, pp. 729-740, (2016).
[36] Vadim. U., "Sliding Modes in Control and Optimization", Part of the book series: Communications and Control Engineering, Springer Science & Business Media, Berlin, Heidelberg, Germany, pp. 234-267, (2013).