مطالعه عددی جابجایی اجباری جریان آرام نانوسیال در یک کانال موازی همراه با منابع حرارتی گسسته

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد- دانشگاه شهرکرد

2 هیات علمی- دانشگاه شهرکرد

چکیده

در این پژوهش، انتقال حرارت جابجایی اجباری جریان آرام نانوسیال آب - مس درون کانال با صفحات موازی با منابع حرارتی دما ثابت، به صورت عددی بررسی شده است. هدف، بررسی عددی تأثیر عدد رینولدز، درصد حجمی نانوذرات و تعداد منابع حرارتی روی میدان جریان و نرخ انتقال حرارت می‌باشد. معادلات حاکم به روش حجم کنترل جبری شده و توسط الگوریتم سیمپل به طور هم‌زمان حل شدند. نتایج نشان می‌دهند که افزایش درصد حجمی نانوذرات و افزایش عدد رینولدز، هم‌چنین تقسیم یک منبع حرارتی به قسمت‌های کوچکتر و توزیع آنها، نرخ انتقال حرارت را افزایش می‌دهند.

کلیدواژه‌ها

موضوعات


[1] Santra, A.K., Sen, S., and Chakraborty, N., “Study of Heat Transfer Due to Laminar Flow of Copper/Water Nanofluid Through Two Isothermally Heated Parallel Plates”, International Journal of Thermal Sciences,  Vol. 48, pp. 391-400, (2009).

 

[2] Zeinali Heris, S., Nassan, T.H., Noie, S.H., and Sardarabadi, M., “Laminar Convective Heat Transfer of /Water Nanofluid Through Square Cross-cectional Duct”, International Journal of Heat and Fluid Flow, Vol. 44, No. 4, pp. 375–382, (2013).

 

[3] Tahir, Sh., and  Mital, M., “Numerical Investingation of Laminar  Nanofluid Developing Flow and Heat Transfer in a Circular Channel”, Applied Thermal Engineering, Vol. 39, No. 9, pp. 8-12, (2012).

 

[4] Akbarinia, A., and  Behzadmehr, A., “Numerical Study of Laminar Mixed Convection of a Nanofluid in Horizontal Curved Tubes”, Applied Thermal Engineering,Vol. 27, pp. 1327-1337,(2007).

 

[5] Mirmasoumi, S., and Behzadmehr, A., “Numerical Study of Laminar Mixed Convection of a Nanofluid in a Horizontal Tube using Two-phase Mixture Model”, Applied Thermal Engineering, Vol. 28,  pp. 717-727, (2008).

 

[6] Dehshiri-Parizi, A., and Salimpour, M.R., “Water/Nanofluid Flow Heat Transfer and Pressure Drop Through Ducts with Circular, Square and Rectangular Cross-sections”, Modares Mechanical Engineering, Vol. 15, No. 5, pp. 377-382, (2015).

 

[7] Feng, Z.Z., and Li, W., “Laminar Mixed Convection of  Large-Prandtl-Number in Tube Nanofluid Flow, Part I: Experimental Study”, International Journal of Heat and Mass Transfer, Vol. 65, pp. 919-927, (2013).

 

[8] Akbari, M., Behzadmehr, A., and Shahraki, F., “Fully Developed Mixed Convection in Horizontal and Inclined Tubes with Uniform Heat Flux using Nanofluid”, International Journal of Heat and Fluid Flow, Vol. 29, pp. 545-556, (2008).

 

[9] Hosseinipour, E., Zeinali Heris, S., and Shanbedi, M.,  “Experimental Investigation of Heat Transfer Coefficient and Pressure Drop of Carbon Nanotubes-water Nanofluid under Constant Heat Flux”, Modares Mechanical Engineering, Vol. 14, No. 13, pp. 19-26, (2014).

 

[10] Fakour, M., Vahabzadeh, A., and Ganji, D.D., “Scrutiny of Mixed Convection Flow of a Nanofluid in a Vertical Channel, Modeling of Microscale Transport in Multiphase Systems”, Case Studies in Thermal Engineering, Vol. 4, pp. 15-23, (2014).

 

[11] Mansour, R.B., Galanis, N., and Nguyen, C.T., “Experimental Study of Mixed Convection with Water/Nanofluid in Inclined Tube with Uniform Wall Heat Flux”, International Journal of Thermal Sciences, Vol. 50, pp. 403-410, (2011).

[12] Alvarino, P.F., SaizJabardo, J.M., Arce, A., and Lamas Galdo, M.I., “A Numerical Investigation of Laminar Flow of a Water/Alumina Nanofluid”, International Journal of Heat and Mass Transfer, Vol. 59, pp. 423-432, (2013).

 

[13] Salimi Gachuiee, M., Peyghambarzadeh, S.M., and Hashemabadi, S.H., “Experimental Investigation of Convective Heat Transfer of /Water”, Modares Mechanical Engineering, Vol. 15, No. 2, pp. 270-280, (2015).

 

[14] Malvandi, A., and Ganji, D.D., “Effects of Nanoparticle Migration on Force Convection of Alumina/Water Nanofluid in a Cooled Parallel-plate Channel”,Advanced Powder Technology, Vol. 84, pp. 196-206, (2014).

 

[15] Kalteh, M., Abbassi, A., Saffar-Avval, M., Frijns, A., Darhuber, A., and Harting, J., “Experimental and Numerical Investigation of Nanofluid Forced Convection Inside a Wide Microchannel Heat Sink”, Applied Thermal Engineering, Vol. 36, pp. 260-268, (2012).

 

[16] Ahmed, M., and Eslamian, M., “Laminar Forced Convection of a Nanofluid in a Microchannel: Effect of Flow Inertia and External Forces on Heat Transfer and Fluid Flow Characteristics”, Applied Thermal Engineering,Vol. 78, pp. 326-338, (2015).

 

[17] Brinkman, H.C., “The Viscosity of Concentrated Suspension and Solution”,  International Journal Chemical Physics, Vol. 20, No. 4, pp. 571-581, (1952).

 

[18] Abu-Nada, E., Masoud, Z., and Hijazi, A., “Natural Convection Heat Transfer Enhancement in Horizontal Concentric Annuli using Nanofluids”, Int. Comm. in Heat and Mass Transfer, Vol. 35, No. 5, pp. 657-665, (2008).

 

[19] Corcione, M., “Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids”, Energy Convers. Manag, Vol. 52, pp. 789-793, (2011).

 

[20] Patankar, S.V., Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, D.C, (1980).

 

[21] Zeinali Heris, S., Etemad, S.Gh., and Nasr Esfahany, M., “Experimental Investigation of Oxide Nanofluids Laminar Flow Convective Heat Transfer”, Int. Comm. in Heat and MassTransfer, Vol.33, pp. 529-535, (2006).