مطالعه خمش هیدروژل‌های حساس به PH در تیر دارای خواص گرادیانی

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه تهران

چکیده

هیدروژل‌ها در اثر تحریک محیطی آب جذب کرده و متورم می‌شوند. هیدروژل‌های-گرادیانی حساس به pH بعلت کاربردهای متنوع از اهمیت برخوردارند. رفتار مکانیکی این مواد حین تغییر pH، با تعریف تابع انرژی متشکل از چهاربخش انرژی کشیدگی شبکه و انرژی‌های ترکیب وانرژی تفکیک شبیه‌سازی می‌گردد. با فرض تغییر مشخصات هیدروژل‌ درراستای ضخامت حل نیمه‌تحلیلی برای خمش این مواد درشرایط کرنش-صفحه‌ای ارائه گردیده است. در این میان برای ارزیابی صحت روش ارائه شده، نتایج خروجی با روش اجزا محدود مقایسه شده است. وجود پیوستگی در تنش‌های شعاعی و مماسی که پیش‌تر در اختارهای چندلایه دیده نمی‌شد، از دیگر مزایای تیرگرادیانی می‌باشد.

کلیدواژه‌ها

موضوعات


[1] Chester, S.A., and Anand, L., "A Thermo-mechanically Coupled Theory for Fluid Permeation in Elastomeric Materials: Application to Thermally Responsive Gels", Journal of the Mechanics Physics of Solids, Vol. 59, No. 10, pp. 1978-2006, (2011).

 

[2] Guo, W., Li, M., and Zhou, J., "Modeling Programmable Deformation of Self-folding All-polymer Structures with Temperature-sensitive Hydrogels", Smart Materials Structures, Vol. 22, No. 11, pp. 115028, (2013).

 

[3]  Mazaheri, H., Baghani, M.,  Naghdabadi, R.,  and Sohrabpour, S.,  "Inhomogeneous Swelling Behavior of Temperature Sensitive PNIPAM Hydrogels in Micro-valves: Analytical and Numerical Study", Smart Materials Structures, Vol. 24, No. 4, pp. 045004, (2015).

 

[4] Mazaheri, H., Baghani, M.,  Naghdabadi, R., and Sohrabpour, S., "Coupling Behavior of the pH/temperature Sensitive Hydrogels for the Inhomogeneous and Homogeneous Swelling", Smart Materials Structures, Vol. 25, No. 8, pp. 085034, (2016).

 

[5] Mazaheri, H., Baghani, M., and Naghdabadi, R., "Inhomogeneous and Homogeneous Swelling Behavior of Temperature-sensitive Poly (N-isopropylacrylamide) Hydrogels", Journal of Intelligent Material Systems Structures, Vol. 27, No. 3, pp. 324-336, (2016).

 

[6] Morimoto, T., and Ashida, F., "Temperature-responsive Bending of a Bilayer Gel", International Journal of Solids Structures, Vol. 56, pp. 20-28, (2015).

 

[7] Cai, S., and Suo, Z., "Mechanics and Chemical Thermodynamics of Phase Transition in Temperature-sensitive Hydrogels", Journal of the Mechanics Physics of Solids, Vol. 59, No. 11, pp. 2259-2278, (2011).

 

[8] Marcombe, R., Cai, S., Hong, W., Zhao, X., Lapusta, Y., and Suo, Z., "A Theory of Constrained Swelling of a pH-sensitive Hydrogel", Soft Matter, Vol. 6, No. 4, pp. 784-793, (2010).

 

[9] Toh, W., Ng, T.Y., Hu, J.,  and Liu, Z., "Mechanics of Inhomogeneous Large Deformation of Photo-thermal Sensitive Hydrogels", International Journal of Solids Structures, Vol. 51, No. 25-26, pp. 4440-4451, (2014).

 

[10] Li, H., and Luo, R., "Modeling the Influence of Initial Geometry on the Equilibrium Responses of Glucose-sensitive Hydrogel", Journal of Intelligent Material Systems Structures, Vol. 22, No. 8, pp. 715-722, (2011).

 

[11] Chester, S.A., and Anand, L., "A Coupled Theory of Fluid Permeation and Large Deformations for Elastomeric Materials", Journal of the Mechanics Physics of Solids, Vol. 58, No. 11, pp. 1879-1906, (2010).

 

[12] Doi, M., "Gel Dynamics", Journal of the Physical Society of Japan, Vol. 78, No. 5, pp. 052001, (2009).

 

[13]  Guenther, M., Gerlach, G., and Wallmersperger, T., "Non-linear Effects in Hydrogel-based Chemical Sensors: Experiment and Modeling", Journal of Intelligent Material Systems Structures, Vol. 20, No. 8, pp. 949-961, (2009).

 

[14] Ionov, L., "Biomimetic Hydrogel Based Actuating Systems", Advanced Functional Materials, Vol. 23, No. 36, pp. 4555-4570, (2013).

 

[15]  Richter, A., "Hydrogels for Actuators", in Hydrogel Sensors and Actuators, Springer, Berlin, Heidelberg, pp. 221-248, (2009).

 

[16]  Chávez, J.P., Voigt, A.,  Schreiter, J.,  Marschner, U., Siegmund, S.,  and Richter, A.,  "A New Self-excited Chemo-fluidic Oscillator Based on Stimuli-responsive Hydrogels: Mathematical Modeling and Dynamic Behavior", Applied Mathematical Modelling, Vol. 40, No. 23-24, pp. 9719-9738, (2016).

 

[17] Hoffman, A.S., "Hydrogels for Biomedical Applications", Advanced Drug Delivery Reviews, Vol. 64, pp. 18-23, (2012).

[18] Sharabi, M., D., Varssano, R., Eliasy, Y., Benayahu, D., Benayahu, and Haj-Ali, R., "Mechanical Flexure Behavior of Bio-inspired Collagen-reinforced Thin Composites", Composite Structures, Vol. 153, pp. 392-400, (2016).

 

[19] Zeng, X., Li, C.,  Zhu, D., Cho, H.J., and Jiang, H., "Tunable Microlens Arrays Actuated by Various Thermo-responsive Hydrogel Structures", Journal of Micromechanics Microengineering, Vol. 20, No. 11, pp. 115035, (2010).

 

[20]  Guan, J., H. He, D.J., Hansford, and Lee, L.J., "Self-folding of Three-dimensional Hydrogel Microstructures", The Journal of Physical Chemistry B., Vol. 109, No. 49, pp. 23134-23137, (2005).

 

[21] Hu, Z., Zhang, X., and Li, Y., "Synthesis and Application of Modulated Polymer Gels", Science, Vol. 269, pp. 525-527, (1995).

 

[22] Abdolahi, J., Baghani, M., Arbabi, N., and Mazaheri, H.,  "Analytical and Numerical Analysis of Swelling-induced Large Bending of Thermally-activated Hydrogel Bilayers", International Journal of Solids Structures, Vol. 99,  pp. 1-11, (2016).

 

[23] Abdolahi, J., Baghani, M., Arbabi, N., and Mazaheri, H., "Finite Bending of a Temperature-sensitive Hydrogel Tri-layer: An Analytical and Finite Element Analysis", Composite Structures, Vol. 164, pp. 219-228, (2017).

 

[24] Guvendiren, M., Burdick, J.A., and Yang, S., "Kinetic Study of Swelling-induced Surface Pattern Formation and Ordering in Hydrogel Films with Depth-wise Crosslinking Gradient", Soft Matter, Vol. 6, No. 9, pp. 2044-2049, (2010).

 

[25] Guvendiren, M., Burdick, J.A., and Yang, S., "Solvent Induced Transition from Wrinkles to Creases in Thin Film Gels with Depth-wise Crosslinking Gradients", Soft Matter, Vol. 6, No. 22, pp. 5795-5801, (2010).

 

[26]  Guvendiren, M., S., Yang, and Burdick, J.A., "Swelling Induced Surface Patterns in Hydrogels with Gradient Crosslinking Density", Advanced Functional Materials, Vol. 19, No. 19, pp. 3038-3045, (2009).

 

[27] Wu, Z., Bouklas, N., and Huang, R.,  "Swell-induced Surface Instability of Hydrogel Layers with Material Properties Varying in Thickness Direction", International Journal of Solids Structures, Vol. 50, No. 3-4, pp. 578-587, (2013).

 

[28]  Wu, Z., Bouklas, N.,  Liu, Y., and Huang, R., "Onset of Swell-induced Surface Instability of Hydrogel Layers with Depth-wise Graded Material Properties", Mechanics of Materials, Vol. 105, pp. 138-147, (2017).

 

[29] Wu, Z., Meng, J., Liu, Y., Li, H., and Huang, R., "A State Space Method for Surface Instability of Elastic Layers with Material Properties Varying in Thickness Direction", Journal of Applied Mechanics, Vol. 81, No. 8, pp. 081003, (2014).

 

[30] Roccabianca, S., Gei, M., and Bigoni, D., "Plane Strain Bifurcations of Elastic Layered Structures Subject to Finite Bending: Theory Versus Experiments", IMA Journal of Applied Mathematics, Vol. 75, No. 4, pp. 525-548, (2010).

 

[31] Kierzenka, J., and Shampine, L.F., "A BVP Solver that Controls Residual and Error", Journal of Numerical Analysis, Industrial and Applied Mathematics, Vol. 3, No. 1-2, pp. 27-41, (2008).