تحلیل عددی انتقال حرارت همرفت طبیعی آرام نانوسیال در یک جریان با موانع مربعی و دایره‌ای شکل

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

1 دانشگاه آطاد بوشهر

2 دانشگاه آزاد اسلامی واحد مهدیشهر

3 فارغ التحصیل دانشگاه صنعتی امیرکبیر

چکیده

در این مقاله تحلیل عددی انتقال حرارت همرفت طبیعی آرام نانوسیال در یک جریان با موانع مربعی و دایره‌ای شکل بررسی شده است. تمامی مقایسه‌ها برای حالت‌های مختلف، با عدد رایلی اصلاح شده Ram صورت گرفته است. با توجه به نتایج به دست آمده مشاهده گردید که اگر دوهندسه دارای ضریب تخلخل مشابه باشند آن‌گاه مقدار ضریب نفوذ پذیری معادل Keq برای موانع دایره‌ای بزرگ‌تراز موانع مربعی است، ولی مقادیر عدد ناسلت متوسط برای موانع دایره‌ای کمتر ازموانع مربعی خواهد بود.همچنین زمانی که تعداد موانع کم است نحوه توزیع دما وخطوط جریان وابسته به شکل موانع میباشد. نتایج نشان دادند که برای محفظه دارای المان حرارتی با آرایش مربعی انتقال حرارت هدایت غالب است و برای آرایش افقی المان‌ها انتقال حرارت جابه‌جایی غالب است. با افزایش عدد رایلی و در نتیجه زیاد شدن جریان چرخشی در برخی نواحی محفظه، نرخ انتقال حرارت جابه‌جایی در مقایسه با هدایت افزایش پیدا می‌کند. نتایج حل عددی در تحقیق حاضر یک افزایش در عدد ناسلت میانگین و همچنین ضریب انتقال حرارت را، برای هنگامی‌که غلظت حجمی نانوسیال رقیق افزایش یابد، نشان می‌دهد.

کلیدواژه‌ها

موضوعات


[1] Masuda, H., Ebata, A., and Teramae, K., "Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-fine Particles, Dispersion of Al2O3, SiO2 and TiO2 Ultra-fine Particles: Dispersion of Al2O3, SiO2 and TiO2 Ultra-fine Particles", Nestu Bussei Vol. 7, pp. 227-233, (1993).
 [2] Chamkha, A., Ismael, M., Kasaeipoor, A., and Armaghani, T., "Entropy Generation and Natural Convection of CuO-water Nanofluid in C-shaped Cavity under Magnetic Field", Entropy, Vol. 18, No. 2, 50, (2016).
 
[3] Kasaeipoor, A., Ghasemi, B., and Raisi, A., "Magnetic Field on Nanofluid Water-Cu Natural Convection in an Inclined T Shape Cavity", Modares Mechanical Engineering Journal, (2014).
 
[4] Aminossadati, S. M., and Ghasemi, B., "Natural Convection of Water–CuO Nanofluid in a Cavity with Two Pairs of Heat Source–sink", International Communications in Heat and Mass Transfer, Vol. 38, pp. 672-678, (2011).
 
[5] Maghrebi, M. J., Nazari, M., and Armaghani, T., "Forced Convection Heat Transfer of Nanofluids in a Porous Channel", Transport in Porous Media, Vol. 93, pp. 401-413, (2012).
 
[6] Hajipour, M., and Molaei Dehkordi, A., "Mixed-convection Flow of Al2O3–H2O Nanofluid in a Channel Partially Filled with Porous Metal Foam: Experimental and Numerical Study", Experimental Thermal and Fluid Science, Vol. 53, pp. 49-56, (2014).
 
[7] Rao, S. S., and Srivastava, A., "Interferometry-based Whole Field Investigation of Heat Transfer Characteristics of Dilute Nanofluids", International Journal of Heat and Mass Transfer,Vol. 79, pp. 166-175, (2014).
 
[8] Rabeti, M., "Free Convection Heat Transfer of Nanofluids from a Horizontal Plate Embedded in a Porous Medium", Advanced Energy: An International Journal, Vol. 1, pp. 23-32, (2014).
 
[9] Makungu, J., Mureithi, E., and Kuznetsov, D., "Free Convection Flow Past an Impermeable Wedge Embedded in Nanofluid Saturated Porous Medium with Variable Viscosity Base Fluid", Engineering Mathematics Letters, Vol. 14, pp. 1-18, (2014).
 
[10] Mejri, I., Mahmoudi, A., Abbassi, M. A., and Omri, A., "MHD Natural Convection in a Nanofluid-filled Enclosure with Non-uniform Heating on Both Side Walls", Fluid Dynamics & Materials Processing, FDM P, Vol. 10, pp. 83-114, (2014).
 
 [11] Hatami, M., and Ganji, D., "Thermal and Flow Analysis of Microchannel Heat Sink (MCHS) Cooled by Cu–water Nanofluid using Porous Media Approach and Least Square Method", Energy Conversion and Management, Vol. 78, pp. 347-358, (2014).
 
[12] Nguyen, M. T., Aly, A. M., and Lee, S. W., "Natural Convection in a Non-Darcy Porous Cavity Filled with Cu–water Nanofluid using the Characteristic-based Split Procedure in Finite-element Method", Numerical Heat Transfer, Part A: Applications, Vol. 67, pp. 224-247, (2015).
 
[13] Kalidasan, K., Velkennedy, R., and Kanna, P. R.,  "Natural Convection Heat Transfer Enhancement using Nanofluid and Time-variant Temperature on the Square Enclosure with Diagonally Constructed Twin Adiabatic Blocks", Applied Thermal Engineering, Vol. 92, pp. 219-235, (2016).
 
[14] Ravnik, J., and Škerget, L., "A Numerical Study of Nanofluid Natural Convection in a Cubic Enclosure with a Circular and an Ellipsoidal Cylinder", International Journal of Heat and Mass Transfer, Vol. 89, pp. 596-605, (2015).
 
[15] Rao, S. S., and Srivastava, A.," Interferometric Study of Natural Convection in a Differentially-heated Cavity with Al2O3–water Based Dilute Nanofluids", International Journal of Heat and Mass Transfer, Vol. 92, pp. 1128-1142, (2016).
 
[16] Bouhalleb, M., and Abbassi, H., "Numerical Investigation of Heat Transfer by CuO–water Nanofluid in Rectangular Enclosures", Heat Transfer Engineering, Vol. 37, pp. 13-23, (2016).
 
[17] Kasaeipoor, A., Ghasemi, B., and Aminossadati, S.M., "Convection of Cu-Water Nanofluid in a Vented T-shaped Cavity in the Presence of Magnetic Field", International Journal of Thermal Sciences. Vol. 94, pp. 50-60, (2015).
 
[18] Sheremet, M. A., Groşan, T., and Pop, I., "Steady-state Free Convection in Right-angle Porous Trapezoidal Cavity Filled by a Nanofluid: Buongiorno’s Mathematical Model", European Journal of Mechanics-B/Fluids, Vol. 53, pp. 241-250, (2015).
 
 [19] Sheremet, M. A., Pop, I., and Bachok, N., "Effect of Thermal Dispersion on Transient Natural Convection in a Wavy-walled Porous Cavity Filled with a Nanofluid: Tiwari and Das’ Nanofluid Model", International Journal of Heat and Mass Transfer,Vol. 92, pp. 1053-1060, (2016).
 
[20] Makulati, N., Kasaeipoor, A., and Rashidi, M.M., "Numerical Study of Natural Convection of a Water–alumina Nanofluid in Inclined C-shaped Enclosures under the Effect of Magnetic Field", Advanced Powder Technology, Vol. 27, pp. 661-672, (2016).
 
[21] Khanafer, K., AlAmiri, A., and Bull, J., "Laminar Natural Convection Heat Transfer in a Differentially Heated Cavity with a Thin Porous Fin Attached to the Hot Wall", International Journal of Heat and Mass Transfer, Vol. 87, pp. 59-70, (2015).
 
[22] Groşan, T., Revnic, C., Pop, I., and Ingham, D. B., "Free Convection Heat Transfer in a Square Cavity Filled with a Porous Medium Saturated by a Nanofluid", International Journal of Heat and Mass Transfer, Vol. 87, pp. 36-41, (2015).
 
[23] Sheremet, M. A., Pop, I., and Nazar, R., "Natural Convection in a Square Cavity Filled with a Porous Medium Saturated with a Nanofluid using the Thermal Nonequilibrium Model with a Tiwari and Das Nanofluid Model", International Journal of Mechanical Sciences, Vol. 100, pp. 312-321, (2015).
 
[24] Bhardwaj, S., Dalal, A., and Biswas, G., "Natural Convection Flows in a Porous Nanofluid-Filled Triangular Enclosure with Wavy Left Wall", Proceedings of CHT-15, International Symposium on Advances in Computational Heat Transfer, Rutgers University, Piscataway, USA , May 25-29, (2015).
 
 
[25] Armaghani, T., Chamkha, A. J., Maghrebi, M., and Nazari, M., "Numerical Analysis of a Nanofluid Forced Convection in a Porous Channel: A New Heat Flux Model in LTNE Condition", Journal of Porous Media, Vol. 17, No. 7, pp. 637-646, (2014).
 
[26] Armaghani, T., Maghrebi, M., Chamkha, A. J., and Nazari, M., "Effects of Particle Migration on Nanofluid Forced Convection Heat Transfer in a Local Thermal Non-equilibrium Porous Channel", Journal of Nanofluids, Vol. 3, pp. 51-59, (2014).
 
[27] Ismael, M. A., Armaghani, T., and Chamkha, A. J., "Conjugate Heat Transfer and Entropy Generation in a Cavity Filled with a Nanofluid-saturated Porous Media and Heated by a Triangular Solid", Journal of the Taiwan Institute of Chemical Engineers, Vol. 59, pp. 138-151, (2016).
 
 [28] Braga, E.J., and de Lemos, MJS., "Laminar Natural Convection in Cavities Filled with Circular and Square Rods", International Communications in Heat and Mass Transfer, Vol. 32, pp. 1289-1297, (2005).
 
[29] Patankar, S.V., "Numerical Heat Transfer and Fluid Flow", Hemisphere, New York, (1980).
 
[30] Kulkarni, D. P., Namburu, P. K., and Das, D. K., "Comparison of Heat Transfer Rates of Different Nanofluids on the Basis of the Mouromtseff Number", Electronics Cooling, Vol. 13, No. 3, pp. 28, (2007).