کنترل زوایای اویلر هواپیما با استفاده از وارون دینامیک غیرخطی افزایشی مقاوم

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی برق، دانشگاه صنعتی شاهرود، شاهرود، ایران

2 استاد، دانشکده مهندسی برق، دانشگاه صنعتی شاهرود، شاهرود، ایران

3 دانشیار، دانشکده مهندسی برق، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

وارون دینامیک غیرخطی یکی از روش‌های مطرح در زمینه کنترل دینامیک پرواز است که از توسعه آن به عنوان وارون دینامیک غیرخطی افزایشی (INDI) یاد می ‌شود. بر این اساس، در این مقاله ابتدا مود‌های غیرخطی تند و کند هواپیما به دو بخش مجزا تقسیم و برای هر یک از بخش ‌ها کنترل جداگانه ‌ای طراحی می­گردد که در حلقه خارجی از کنترل‌کننده PID و در حلقه داخلی از کنترل‌کننده مود لغزشی استفاده می­شود. علاوه ­بر اثبات پایداری، نتایج شبیه ‌سازی به همراه مقایسه با حالت ‌های مدل مرجع و INDI مرسوم برای هواپیمای بویینگ 747 ارائه می­ شود.

کلیدواژه‌ها

موضوعات


[1] Devasia, S., and Paden, B., "Nonlinear Inversion-based Output Tracking", IEEE Trans. Autom. Control, Vol. 41(7), pp. 930–942, (1996).
[2] Khalil, H.K., "Nonlinear Systems", 3rd Edition, Upper Saddle River, (2002).
[3] Rysdyk, R., and Calise, A.J., "Robust Nonlinear Adaptive Flight Control for Consistent Handling Qualities", IEEE Transactions on Control Systems Technology, Vol. 13(6), pp. 896-910, (2005).
[4] Bajodah, A.H., "Generalised Dynamic Inversion Spacecraft Control Design Methodologies", IET Control Theory & Applications, Vol. 3(2), pp. 239-251, (2009).
[5] Hall, C.E., and Shtessel, Y.B., "Sliding Mode Disturbance Observer-based Control for a Reusable Launch Vehicle", Journal of Guidance Control and Dynamics, Vol. 29(6), pp. 1315-1328, (2006).
[6] Hamayun, M.T., Edwards, C., and Alwi, H., "A Fault Tolerant Control Allocation Scheme with Output Integral Sliding Modes", Automatica, Vol. 49(6), pp. 1830-1837, (2013).
[7] Shtessel, Y., Buffington, J., and Banda, S., "Multiple Timescale Flight Control Using Reconfigurable Sliding Modes", Journal of Guidance Control and Dynamics, Vol. 22(6), pp. 873-883, (1999).
[8] Shtessel, Y., Buffington, J., and Banda, S., "Tailless Aircraft Flight Control Using Multiple Time Scale Reconfigurable Sliding Modes", IEEE Transactions on Control Systems Technology, Vol. 10(2), pp. 288-296, (2002).
[9] Shtessel ,Y., Hall, C., and Jackson, M., "Reusable Launch Vehicle Control in Multiple- Time-Scale Sliding Modes", Journal of Guidance Control and Dynamics, Vol. 3(6), pp. 1013-1020, (2000).
[10] Shtessel, Y.B., and Shkolnikov, I.A., "Aeronautical and Space Vehicle Control in Dynamic Sliding Manifolds", International Journal of Control, Vol. 76(9-10), pp. 1000-1017, (2003).
[11] Wang, T., Xie, W., and Zhang, Y., "Sliding Mode Fault Tolerant Control Dealing with Modeling Uncertainties and Actuator Faults", ISA Transactions, Vol. 51(3) pp. 386- 392, (2012).
[12] Wu, Y., Yu, X., and Man, Z., "Terminal Sliding Mode Control Design for Uncertain Dynamic Systems", Systems & Control Letters, Vol. 34(5), pp. 281-287, (1998).
[13] Yu, S., et al., "Continuous Finite-time Control for Robotic Manipulators with Terminal Sliding Mode", Automatica, Vol. 41(11), pp. 1957-1964, (2005).
[14] Defoort, M., et al., "A Novel Higher Order Sliding Mode Control Scheme", Systems & Control Letters, Vol. 58(2), pp. 102-108, (2009).
[15] Sagliano, M., Mooij, E., and Theil, S., "Adaptive Disturbance-Based High-Order Sliding-
Mode Control for Hypersonic-Entry Vehicles", Journal of Guidance Control and Dynamics, Vol. 40(3), pp. 521-536, (2017).
[16] Wang, J., et al., "Continuous High Order Sliding Mode Controller Design for a Flexible Air-breathing Hypersonic Vehicle", ISA Transactions, Vol. 53(3), pp. 690-698, (2014).
[17] Adams, R.J. and Banda, S.S., "Robust Flight Control Design using Dynamic Inversion and Structured Singular Value Synthesis", IEEE Transactions on Control Systems Technology, Vol. 1(2), pp. 80-92, (1993).
[18] Smith, P., "A simplified Approach to Nonlinear Dynamic Inversion Based Flight Control", 23rd Atmospheric Flight Mechanics Conferenc, August 10-12, Boston, MA, U.S.A., (2012).
[19] Wang, X., et al., "Stability Analysis for Incremental Nonlinear Dynamic Inversion Control", Journal of Guidance Control and Dynamics, Vol. 42(5), p p. 1116-1129, (2019).
[20] MacKunis, W., et al., "Asymptotic Tracking for Aircraft via Robust and Adaptive Dynamic Inversion Methods", IEEE Transactions on Control Systems Technology, Vol. 18(6), pp. 1448-1456, (2010).
[21] Sieberling, S., Chu, Q.P., and Mulder, J.A., "Robust Flight Control Using Incremental Nonlinear Dynamic Inversion and Angular Acceleration Prediction", Journal of Guidance Control and Dynamics, Vol. 33(6), pp. 1732-1742, (2010).
[22] Li, X., et al., "Command Filtered Model-Free Robust Control for Aircrafts With Actuator Dynamics", IEEE Access, Vol. 7, pp. 139475 139487, (2019).
[23] Qian, W. and Stengel, R.F., "Robust Nonlinear Flight Control of a High-performance Aircraft", IEEE Transactions on Control Systems Technology, Vol. 13(1), pp. 15-26, (2005).
[24] Simplício, P., et al, "An Acceleration Measurements-based Approach for Helicopter Nonlinear Flight Control using Incremental Nonlinear Dynamic Inversion", Control Engineering Practice, Vol. 21(8), pp. 1065-1077, (2013).
[25] Li, Y., Jing, Z., and Liu, G., "Maneuver-Aided Active Satellite Tracking Using Six-DOF Optimal Dynamic Inversion Control", IEEE Transactions on Aerospace and Electronic Systems, Vol. 50(1), pp. 704-719, (2014).
[26] Bardawil, C., and Daher. N., "Combined Fuzzy and Nonlinear Dynamic Observer for Vehicle Longitudinal Velocity and Side-slip Angle", 11th International Symposium on Mechatronics and its Applications (ISMA), March 4-6, Sharjah, United Arab Emirates,
(2018).
[27] Boukezzoula, R., Galichet, S., and Foulloy, L., "Nonlinear Internal Model Control: Application of Inverse Model Based Fuzzy Control", IEEE Transactions on Fuzzy Systems, Vol. 11(6), pp. 814-829, (2003).
[28] Boukezzoula, R., Galichet, S., and Foulloy, L., "Fuzzy Nonlinear Adaptive Internal Model Control (FNAIMC) part II: Fuzzy Model Inversion", European Control Conference (ECC), September 1-3, Karlsruhe, Germany, (1999).
[29] Wang, X., et al",. Incremental Sliding-Mode Fault-Tolerant Flight Control", Journal of Guidance Control and Dynamics, Vol. 42(2), pp. 244-259, (2019).
[30] Hovakimyan, N., Lavretsky, E., and Cao, C., "Adaptive Dynamic Inversion via Time-Scale Separation", IEEE Transactions on Neural Networks, Vol. 19(10), pp. 1702-1711, (2008).
[31] Smeur, E.J.J., Chu, Q., and Croon, G.C.H.E.d., "Adaptive Incremental Nonlinear Dynamic Inversion for Attitude Control of Micro Air Vehicles", Journal of Guidance Control and Dynamics, Vol. 39(3), pp. 450-461, (2016).
[32] Selmic, R.R., and Lewis, F.L., "Neural Net Backlash Compensation with Hebbian Tuning using Dynamic Inversion", Automatica, Vol. 37(8), pp. 1269-1277, (2001).
[33] Cao, S., et al. "Adaptive Incremental Nonlinear Dynamic Inversion Control Based on Neural Network for UAV Maneuver", IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), July 8-12, Hong Kong, China, (2019).
[34] Edwards, C., and Shtessel, Y., "Adaptive Dual-layer Super-twisting Control and Observation", International Journal of Control, Taylor & Francis, Vol. 89(9), pp. 1759- 1766, (2016).
[35] Edwards, C., and Shtessel, Y.B., "Continuous Higher Order Sliding Mode Control Based on Adaptive Disturbance Compensation", 13th International Workshop on Variable Structure Systems (VSS), June 29 - july 2, Nants, France, (2014).
[36] Edwards, C., and Shtessel, Y.B., "Adaptive Continuous Higher Order Sliding Mode Control", Automatica, Vol. 65, pp. 183-190, (2016).
[37] Zhu, Z. and Cao, S., "Back-stepping Sliding Mode Control Method for Quadrotor UAV with Actuator Failure", The Journal of Engineering, Vol. 22, pp. 8374-8377, (2019).
[38] Zaihidee, F.M, Mekhilef, S., and Mubin, M., "Application of Fractional Order Sliding Mode Control for Speed Control of Permanent Magnet Synchronous Motor", IEEE Access, Vol. 7, pp. 101765-101774, (2019).
[39] Hwang, C., Wu, H., and Hung, W., "Software/Hardware-Based Hierarchical Finite-Time Sliding-Mode Control With Input Saturation for an Omnidirectional Autonomous Mobile Robot", IEEE Access, Vol. 7, pp. 90254-90267, (2019).
[40] Li, Z., et al., "Sensorless Vector Control of Permanent Magnet Synchronous Linear Motor Based on Self-Adaptive Super-Twisting Sliding Mode Controller". IEEE Access, Vol. 7, pp. 44998-45011, (2019).
[41] Roskam, J., "Airplane Flight Dynamics and Automatic Flight Controls", DARcorporation, ISBN 1884885179, (1998).